CF 148D D. Bag of mice (概率DP||数学期望)
The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to an amicable agreement, so they decide to leave this up to chance.
They take turns drawing a mouse from a bag which initially contains w white and b black mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice). Princess draws first. What is the probability of the princess winning?
If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.
Input
The only line of input data contains two integers w and b (0 ≤ w, b ≤ 1000).
Output
Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed 10 - 9.
Example
Input
1 3
Output
0.500000000
Input
5 5
Output
0.658730159
Note
Let's go through the first sample. The probability of the princess drawing a white mouse on her first turn and winning right away is 1/4. The probability of the dragon drawing a black mouse and not winning on his first turn is 3/4 * 2/3 = 1/2. After this there are two mice left in the bag — one black and one white; one of them jumps out, and the other is drawn by the princess on her second turn. If the princess' mouse is white, she wins (probability is 1/2 * 1/2 = 1/4), otherwise nobody gets the white mouse, so according to the rule the dragon wins.
题意:
一对情侣开房玩抓老鼠游戏,老鼠有黑白两色,女的为先手,先抓到白老鼠胜。特别的,男的每抓一只老鼠后,也会随机放走一只老鼠。问女的赢的概率是多少。如果输了,后果会很严重,当天晚上只能睡沙发。
思路:
dp[i][j]为当前状态,有i只白老鼠,j只黑老鼠,女的赢的概率。那么dp[][] = 这一次赢 + 以后赢= i/(i+j) + 。。。具体如下。
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
double dp[][]; int w,b,i,j;
int main()
{
while(~scanf("%d%d",&w,&b)){
memset(dp,,sizeof(dp));
for(i=;i<=w;i++)
for(j=;j<=b;j++){
if(i==) { dp[i][j]=; continue;}
if(j==) { dp[i][j]=1.0; continue;}
dp[i][j]=1.0*i/(i+j);
if(j>=) dp[i][j]+=(1.0*j/(i+j))*(j-)/(i+j-)*i/(i+j-)*dp[i-][j-];
if(j>=) dp[i][j]+=(1.0*j/(i+j))*(j-)/(i+j-)*(j-)/(i+j-)*dp[i][j-]; }
printf("%.9lf\n",dp[w][b]);
}return ;
}
CF 148D D. Bag of mice (概率DP||数学期望)的更多相关文章
- Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题
除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...
- CF 148D Bag of mice 概率dp 难度:0
D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- CF 148D D Bag of mice (概率dp)
题目链接 D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- codeforce 148D. Bag of mice[概率dp]
D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- codeforces 148D Bag of mice(概率dp)
题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...
- Bag of mice(概率DP)
Bag of mice CodeForces - 148D The dragon and the princess are arguing about what to do on the New Y ...
- Codeforces Round #105 (Div. 2) D. Bag of mice 概率dp
题目链接: http://codeforces.com/problemset/problem/148/D D. Bag of mice time limit per test2 secondsmemo ...
- Codeforces 148D Bag of mice 概率dp(水
题目链接:http://codeforces.com/problemset/problem/148/D 题意: 原来袋子里有w仅仅白鼠和b仅仅黑鼠 龙和王妃轮流从袋子里抓老鼠. 谁先抓到白色老师谁就赢 ...
- 抓老鼠 codeForce 148D - Bag of mice 概率DP
设dp[i][j]为有白老鼠i只,黑老鼠j只时轮到公主取时,公主赢的概率. 那么当i = 0 时,为0 当j = 0时,为1 公主可直接取出白老鼠一只赢的概率为i/(i+j) 公主取出了黑老鼠,龙必然 ...
随机推荐
- Kruskal算法初步
2017-09-18 21:53:00 writer:pprp 代码如下: /* @theme: kruskal @writer:pprp @date:2017/8/19 @begin:21:19 @ ...
- Jenkins-Kubernetes-docker-自动发布
使用的是Jenkins pipeline: 这里只是做了更新,没有创建,没有借助helm等工具,先用着,以后再研究. pipeline { agent any stages { stage(" ...
- Excel转化成DataTable实现:NPOI和OLEDb
使用两种方式实现的excel数据转化成DataSet,再结合前一篇的DataTable转化为实体,就可以解决excel到实体之间的转化. 代码如下: 首先定义一个接口: public interfac ...
- codeforces741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- hadoop2.6.0集群配置
1.修改机器名 集群的搭建最少需要三个节点,机器名分别修改为master,slave1,slave2.其中以master为主要操作系统. 修改hostname: sudo gedit /etc/hos ...
- 卡在了“正在设定 ttf-mscorefonts-installer”的解决
方向键啊鼠标的都不行,其实用tab键就可以选择了.冏死--
- C++(二十五) — 类的封装、实现
1.类的封装.实现.对象的定义及使用 (1)类是一组对象的抽象化模型.类对象将数据及函数操作集合在一个实体中,只需要接口,而不需要知道具体的操作. 隐藏细节,模型化: 类内自由修改: 减少耦合,相当于 ...
- 重新学习MySQL数据库3:Mysql存储引擎与数据存储原理
重新学习Mysql数据库3:Mysql存储引擎与数据存储原理 数据库的定义 很多开发者在最开始时其实都对数据库有一个比较模糊的认识,觉得数据库就是一堆数据的集合,但是实际却比这复杂的多,数据库领域中有 ...
- HDU 2795 线段树单点更新
Billboard Time Limit: 20000/8000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- buctoj——合法的出栈顺序
题目描述 我们知道,一个入栈序列是{1,2,3}的合法出栈序列有{3,2,1},{1,2,3}等,而{3,1,2}是不合法的.现在冰语有一个长度为n的序列A(保证序列内数字唯一,且1<=A[i] ...