CCF 交通规划(Dijkstra+优先队列)
交通规划
1 2 4
1 3 5
2 3 2
2 4 3
3 4 2
#include<cstdio>
#include<queue>
#include<vector>
#define maxn 100005
#define inf 0x7fffffff
int n,m;
using namespace std;
struct Point
{
int u;
int dist;
Point(int uu,int d){
u=uu,dist=d;
}
friend bool operator < (Point a,Point b) {
return a.dist > b.dist;
}
};
struct Edge
{
int v;
int cost;
Edge(int vv,int c){
v=vv,cost=c;
}
};
vector<Edge> G[maxn];
bool vis[maxn];
int disto[maxn];
int costo[maxn]; void Dijkstra(int s)
{
for(int i=;i<=n;i++){
vis[i]=false;
disto[i]=costo[i]=inf;
}
disto[s]=;
costo[s]=;
priority_queue<Point> queue;
queue.push(Point(s,));
while(!queue.empty()){
Point p=queue.top();
queue.pop();
int u=p.u;
if(!vis[u]){
for(int i=;i<G[u].size();i++){
int v=G[u][i].v;
int co=G[u][i].cost;
if(!vis[v]){
if(disto[v]>disto[u]+co){
disto[v]=disto[u]+co;
queue.push(Point(v,disto[v]));
costo[v]=co;
}
if(disto[v]==disto[u]+co){
costo[v]=min(costo[v],co);
}
}
}
}
}
}
int main()
{
int u,v,c;
scanf("%d%d",&n,&m);
while(m--){
scanf("%d%d%d",&u,&v,&c);
G[u].push_back(Edge(v,c));
G[v].push_back(Edge(u,c));
}
Dijkstra();
int ans=;
for(int i=;i<=n;i++)
ans+=costo[i];
printf("%d",ans);
}
CCF 交通规划(Dijkstra+优先队列)的更多相关文章
- ccf交通规划
一.试题 问题描述 G国国王来中国参观后,被中国的高速铁路深深的震撼,决定为自己的国家也建设一个高速铁路系统. 建设高速铁路投入非常大,为了节约建设成本,G国国王决定不新建铁路,而是将已有的铁路改 ...
- CCF 201609-4 交通规划
问题描述 试题编号: 201609-4 试题名称: 交通规划 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 G国国王来中国参观后,被中国的高速铁路深深的震撼,决定为自己的国家 ...
- CCF CSP 201609-4 交通规划
CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201609-4 交通规划 问题描述 G国国王来中国参观后,被中国的高速铁路深深的震撼,决定为自 ...
- CCF-交通规划-dijkstra+贪心
交通规划 问题描述 G国国王来中国参观后,被中国的高速铁路深深的震撼,决定为自己的国家也建设一个高速铁路系统. 建设高速铁路投入非常大,为了节约建设成本,G国国王决定不新建铁路,而是将已有的铁路改造成 ...
- 地铁 Dijkstra(优先队列优化) 湖南省第12届省赛
传送门:地铁 思路:拆点,最短路:拆点比较复杂,所以对边进行最短路,spfa会tle,所以改用Dijkstra(优先队列优化) 模板 /******************************** ...
- POJ 1511 - Invitation Cards (dijkstra优先队列)
题目链接:http://poj.org/problem?id=1511 就是求从起点到其他点的最短距离加上其他点到起点的最短距离的和 , 注意路是单向的. 因为点和边很多, 所以用dijkstra优先 ...
- 【bzo1579】拆点+dijkstra优先队列优化+其他优化
题意: n个点,m条边,问从1走到n的最短路,其中有K次机会可以让一条路的权值变成0.1≤N≤10000;1≤M≤500000;1≤K≤20 题解: 拆点,一个点拆成K个,分别表示到了这个点时还有多少 ...
- 【poj 1724】 ROADS 最短路(dijkstra+优先队列)
ROADS Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 12436 Accepted: 4591 Description N ...
- (模板)poj2387(dijkstra+优先队列优化模板题)
题目链接:https://vjudge.net/problem/POJ-2387 题意:给n个点(<=1000),m条边(<=2000),求结点n到结点1的最短路. 思路:dijkstra ...
随机推荐
- Apt encounters errors with bad GPG keys [duplicate]
cd /var/lib/apt sudo mv lists lists.old sudo mkdir -p lists/partial sudo apt-get update 转自: http://a ...
- hdu 1426:Sudoku Killer(DFS深搜,进阶题目,求数独的解)
Sudoku Killer Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- VC++为你的程序增加内存泄露检测
使用方法: C++ Code 12345678910111213141516171819202122232425262728293031323334353637383940414243444546 ...
- layui多选框
多选下拉框:http://sun.faysunshine.com/layui/formSelects-v4/example/example_v4.html 1.下载formSelects-v4.1 2 ...
- IOS 开发之--获取真机的deviceToeken
获取真机的devicetoken的方法: #pragma mark 注册APNs成功并上报DeviceToken - (void)application:(UIApplication *)applic ...
- MD5骨骼动画模型加载
前面我们分析了静态模型OBJ格式,桢动画模型MD2,这篇主要分析骨骼动画MD5的一些概念并且实现. 混合桢动画有计算简单,容易实现等优点,但是在需要比较细致的效果时,则需要更多的关键桢,每桢都添加相同 ...
- Android无线测试之—UiAutomator UiScrollable API介绍六
向前与向后滚动API 一.向前与向后滚动相关API 返回值 API 描述 boolean scrollBackward(int steps) 自动以步长向后滑动 boolean scrollBackw ...
- ORA-00972: 标识符过长
若是拼接成的sql语句,请查找传递参数时字符型字段是否两边少了引号.
- PMP 质量管理7张图 很形象
PMP 质量管理 中的因果图.控制图.流程图.核查表.直方图.帕累托图.散点图
- jquery如何获取type=hidden的input元素的值?
function setHiddenFields() { var hiddens = $("input:hidden"); $.each(hiddens, function (in ...