3727: PA2014 Final Zadanie

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 279  Solved: 121

Description

吉丽YY了一道神题,题面是这样的:
“一棵n个点的树,每条边长度为1,第i个结点居住着a[i]个人。假设在i结点举行会议,所有人都从原住址沿着最短路径来到i结点,行走的总路程为b[i]。输出所有b[i]。”
吉丽已经造好了数据,但熊孩子把输入文件中所有a[i]给删掉了。你能帮他恢复吗?

Input

第一行一个整数n(2<=n<=300000)。
接下来n-1行,每行两个整数x,y,表示x和y之间有连边。
接下来一行由空格隔开的n个整数b[i](0<=b[i]<=10^9)。

Output

输出一行由空格隔开的n个整数a[i]。
如果你觉得有多组解就任意输出其中一组。

Sample Input

2
1 2
17 31

Sample Output

31 17

HINT

Source

【分析】

  高斯消元肯定是不行的。

  直接计算肯定是不行的。

  output那个多解那句话一脸嘲讽肯定是唯一解的。

  好了,肯定是和父亲差分,这样的式子才靠谱。

  有:b[fa[i]]-b[i]=sum[i]-(tot-sum[i])=2*sum[i]-tot

  tot是全树的a的和,你把1当成根的话就是sum[1]。

  这时候,大家都想把tot求出来。

  tot=b[fa[i]]-b[i]-2*sum[i]

  肯定是要加起来的。

  $(n-1)*tot=\sum_{i=1}^{n-1} b[fa[i]]-b[i] -2*sum[i]$

  但是有sum[i]不知道的怎么破。。。聪明的别人看出来他们的和就是b[1]啊。

  就可以求tot了,有tot就可以求sum了,就可以求a了。。。

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 300010
#define LL long long struct node
{
int x,y,next;
}t[Maxn*];
int len,first[Maxn];
int fa[Maxn];
LL sum[Maxn],a[Maxn],b[Maxn]; void ins(int x,int y)
{
t[++len].x=x;t[len].y=y;
t[len].next=first[x];first[x]=len;
} void dfs(int x,int f)
{
fa[x]=f;
for(int i=first[x];i;i=t[i].next) if(t[i].y!=f)
{
dfs(t[i].y,x);
}
} int main()
{
int n;
scanf("%d",&n);
len=;
memset(first,,sizeof(first));
for(int i=;i<n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
ins(x,y);ins(y,x);
}
for(int i=;i<=n;i++) scanf("%lld",&b[i]);
dfs(,);
LL sm=;
for(int i=;i<=n;i++) sm+=b[i]-b[fa[i]];
sm+=*b[];
sm/=(n-);sum[]=sm;
for(int i=;i<=n;i++) sum[i]=(b[fa[i]]-b[i]+sm)/;
for(int i=;i<=n;i++) a[i]=sum[i];
for(int i=;i<=n;i++) a[fa[i]]-=sum[i];
for(int i=;i<n;i++) printf("%lld ",a[i]);printf("%d\n",a[n]);
return ;
}

LONG LONG

2017-04-08 09:47:14

【BZOJ 3727】 3727: PA2014 Final Zadanie (递推)的更多相关文章

  1. 【BZOJ3727】PA2014 Final Zadanie 树形DP

    [BZOJ3727]PA2014 Final Zadanie Description 吉丽YY了一道神题,题面是这样的:“一棵n个点的树,每条边长度为1,第i个结点居住着a[i]个人.假设在i结点举行 ...

  2. BZOJ 3727 PA2014 Final Zadanie 树形DP

    题目大意:给定一棵树,令一个点到全部点的距离与点权的乘积之和为b[i].求每一个点的权值a[i] 首先假设给定a[i]我们能够非常轻松的求出b[i] 可是反过来怎么搞?高斯消元?30W? 考虑已知a[ ...

  3. Bzoj 1046: [HAOI2007]上升序列 二分,递推

    1046: [HAOI2007]上升序列 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3671  Solved: 1255[Submit][Stat ...

  4. BZOJ 1019 :[SHOI2008]汉诺塔(递推)

    好吧蒟蒻还是看题解的 其实看到汉诺塔就该想到是递推了 设f[i][j]表示i个在j杆转移到另一个杆的次数 g[i][j]表示i个在j杆转移到那个杆上 可得 f[i][j]=f[i-1][j]+1+f[ ...

  5. bzoj 3930: [CQOI2015]选数【递推】

    妙啊 这个题一上来就想的是莫比乌斯反演: \[ f(d)=\sum_{k=1}^{\left \lceil \frac{r}{d} \right \rceil}\mu(k)(\left \lceil ...

  6. BZOJ 1089 严格n元树 (递推+高精度)

    题解:用a[i]表<=i时有几种树满足度数要求,那么这样就可以递归了,a[i]=a[i-1]^n+1.n个节点每个有a[i-1]种情况,那么将其相乘,最后加上1,因为深度为0也算一种.那么答案就 ...

  7. BZOJ 1009 HNOI 2008 GT考试 递推+矩乘

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3679  Solved: 2254[Submit][Statu ...

  8. bzoj3727: PA2014 Final Zadanie

    我真是SB之神呢这么SB的题都不会 肯定是先无脑正向思考,罗列下关系式: b[1]=∑a[i]*dep[i]=∑tot[i] (i!=1) b[i]=b[fa]-tot[i]+(tot[1]-tot[ ...

  9. HYSBZ(BZOJ) 4300 绝世好题(位运算,递推)

    HYSBZ(BZOJ) 4300 绝世好题(位运算,递推) Description 给定一个长度为n的数列ai,求ai的子序列bi的最长长度,满足bi&bi-1!=0(2<=i<= ...

随机推荐

  1. ④ 设计模式的艺术-04.抽象工厂(Abstract Factory)模式

    抽象工厂模式 用来生产不同产品族的全部产品.(对于增加新的产品,无能为力:支持增加产品族) 抽象工厂模式是工厂方法模式的升级版本,在有多个业务品种.业务分类时,通过抽象工厂模式产生需要的对象是一种非常 ...

  2. 【BZOJ】1297: [SCOI2009]迷路

    [题意]给定n个点的有向带边权图,求0到n-1长度恰好为T的路径数.n<=10,T<=10^9,边权1<=wi<=9. [算法]矩阵快速幂 [题解]这道题的边权全部为1时,有简 ...

  3. c++ virtual总结

    virtual-关键字用于修饰成员函数时,有以下特性 1.用于修饰的基类的成员函数,被修饰的基类成员函数-其派生类的同名成员函数也默认带有virtual 关键字2.当virtual 用于修饰析构函数( ...

  4. NYOJ 208 Supermarket (模拟+并查集)

    题目链接 描述 A supermarket has a set Prod of products on sale. It earns a profit px for each product x∈Pr ...

  5. oracle链接指定实例

    sqlplus /@ORACLE_SID as sysdba; 其中ORACLE_SID为具体的实例名称, 比如连接到orcl实例就执行命令: sqlplus /@orcl as sysdba; se ...

  6. 某团队线下赛AWD writeup&Beescms_V4.0代码审计

    还是跟上篇一样.拿别人比赛的来玩一下.  0x01 预留后门 连接方式: 0x02 后台登录口SQL注入 admin/login.php 在func.php当中找到定义的check_login函数 很 ...

  7. django【ORM】 通过外键字段找对应类

    两个方法其实是一种,用哪个都行,看实例:   方法一: 从list_filter中的字符串,找到model对象的字段,然后得到这个外键对应的类 循环,把list_filter中对应的类所有对象 方法二 ...

  8. 017 CPU冲高定位方法

    1.通过top命令查看cpu占用高的进程ID; 2.通过top -Hp 进程ID 查看该进程下所有线程占用cpu的情况,拿出占用cpu最高的线程ID,换算成十六进制; 3.通过 jstack 进程ID ...

  9. SPOJ DQUERY D-query (在线主席树/ 离线树状数组)

    版权声明:本文为博主原创文章,未经博主允许不得转载. SPOJ DQUERY 题意: 给出一串数,询问[L,R]区间中有多少个不同的数 . 解法: 关键是查询到某个右端点时,使其左边出现过的数都记录在 ...

  10. python安装模块的时候报错error: command 'gcc' failed with exit status 1

    [情况] 在写Python代码的时候,需要用到psutil模块,需要安装. 但是在安装时,报错:error: command 'gcc' failed with exit status 1 [解决步骤 ...