http://www.lydsy.com/JudgeOnline/problem.php?id=1629

这题我想了很久都没想出来啊。。。

其实任意两头相邻的牛交换顺序对其它牛是没有影响的。。

那么我们考虑哪个在前。。(假设现在是待交换的是 a和b,a<b)

当重b-力a < 重a-力b时,就不需交换,否则交换。。

这个贪心自己想想就懂了的。。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << #x << " = " << x << endl
#define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=50005;
int n;
struct nod { int x, y; } p[N];
bool cmp(const nod &a, const nod &b) { return b.x-a.y<a.x-b.y; }
int main() {
read(n);
for1(i, 1, n) read(p[i].x), read(p[i].y);
sort(p+1, p+1+n, cmp);
int sum=0, ans=(~0u>>1)+1;
for3(i, n, 1) {
ans=max(ans, sum-p[i].y);
sum+=p[i].x;
}
print(ans);
return 0;
}

Description

Farmer John's N (1 <= N <= 50,000) cows (numbered 1..N) are planning to run away and join the circus. Their hoofed feet prevent them from tightrope walking and swinging from the trapeze (and their last attempt at firing a cow out of a cannon met with a dismal failure). Thus, they have decided to practice performing acrobatic stunts. The cows aren't terribly creative and have only come up with one acrobatic stunt: standing on top of each other to form a vertical stack of some height. The cows are trying to figure out the order in which they should arrange themselves within this stack. Each of the N cows has an associated weight (1 <= W_i <= 10,000) and strength (1 <= S_i <= 1,000,000,000). The risk of a cow collapsing is equal to the combined weight of all cows on top of her (not including her own weight, of course) minus her strength (so that a stronger cow has a lower risk). Your task is to determine an ordering of the cows that minimizes the greatest risk of collapse for any of the cows. //有三个头牛,下面三行二个数分别代表其体重及力量 //它们玩叠罗汉的游戏,每个牛的危险值等于它上面的牛的体重总和减去它的力量值,因为它要扛起上面所有的牛嘛. //求所有方案中危险值最大的最小

Input

* Line 1: A single line with the integer N. * Lines 2..N+1: Line i+1 describes cow i with two space-separated integers, W_i and S_i.

Output

* Line 1: A single integer, giving the largest risk of all the cows in any optimal ordering that minimizes the risk.

Sample Input

3
10 3
2 5
3 3

Sample Output

2

OUTPUT DETAILS:

Put the cow with weight 10 on the bottom. She will carry the other
two cows, so the risk of her collapsing is 2+3-3=2. The other cows
have lower risk of collapsing.

HINT

Source

【BZOJ】1629: [Usaco2007 Demo]Cow Acrobats(贪心+排序)的更多相关文章

  1. bzoj 1629: [Usaco2007 Demo]Cow Acrobats【贪心+排序】

    仿佛学到了贪心的新姿势-- 考虑相邻两头牛,交换它们对其他牛不产生影响,所以如果交换这两头牛能使这两头牛之间的最大值变小,则交换 #include<iostream> #include&l ...

  2. BZOJ 1629: [Usaco2007 Demo]Cow Acrobats

    Description Farmer John's N (1 <= N <= 50,000) cows (numbered 1..N) are planning to run away a ...

  3. BZOJ1629: [Usaco2007 Demo]Cow Acrobats

    1629: [Usaco2007 Demo]Cow Acrobats Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 601  Solved: 305[Su ...

  4. BZOJ 1629 [Usaco2005 Nov]Cow Acrobats:贪心【局部证明】

    题目链接:http://begin.lydsy.com/JudgeOnline/problem.php?id=1332 题意: 有n头牛在“叠罗汉”. 第i头牛的体重为w[i],力量为s[i]. 一头 ...

  5. BZOJ 1697: [Usaco2007 Feb]Cow Sorting牛排序(置换+贪心)

    题面 Description 农夫JOHN准备把他的 N(1 <= N <= 10,000)头牛排队以便于行动.因为脾气大的牛有可能会捣乱,JOHN想把牛按脾气的大小排序.每一头牛的脾气都 ...

  6. [USACO2007 Demo] Cow Acrobats

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1629 [算法] 贪心 考虑两头相邻的牛 , 它们的高度值和力量值分别为ax , ay ...

  7. BZOJ 1697: [Usaco2007 Feb]Cow Sorting牛排序

    Description 农夫JOHN准备把他的 N(1 <= N <= 10,000)头牛排队以便于行动.因为脾气大的牛有可能会捣乱,JOHN想把牛按脾气的大小排序.每一头牛的脾气都是一个 ...

  8. bzoj 1119 [POI2009]SLO && bzoj 1697 [Usaco2007 Feb]Cow Sorting牛排序——思路(置换)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1119 https://www.lydsy.com/JudgeOnline/problem.p ...

  9. bzoj 1697: [Usaco2007 Feb]Cow Sorting牛排序【置换群】

    至今都不知道置换群是个什么东西--题解说什么就是什么.jpg 以下来自hzwer:http://hzwer.com/3905.html #include<iostream> #includ ...

随机推荐

  1. 【转发】MVC Log4net

    1.引用log4net库类 2.写配置,我一般是写在web.config <configSections> <section name="log4net" typ ...

  2. 解析theme()

    drupal_render()只是对theme()的调用做了包装,真正做任务的还是theme(). function theme($hook, $variables = array()) { ... ...

  3. 【TP5.0】引入public/static目录下的静态资源

    1.假设tp5 下只有一个项目,且application在tp5下, 2.我们知道 外界访问tp5项目,只能通过public/index.php的入口文件,且查看apache服务器我们知道, [DOC ...

  4. centos6.3下yum安装redis

    我得是centos 6.3,如果直接用yum安装redis,报错,如下: [root@CentOS6 etc]# yum install redis Loaded plugins: fastestmi ...

  5. js闭包的应用

    <ul id="ul1"> <li style="border:1px solid red;">1</li> <li ...

  6. Java程序(非web)slf4j整合Log4j2

    一.依赖包准备 //slf4j项目提供 compile group: 'org.slf4j', name: 'slf4j-api', version: '1.7.25' //log4j2项目提供 co ...

  7. 在Quartus中如何使用TCL脚本文件配制管脚

    quartus软件分配管脚的方法有两种,一是选择菜单“assignments->pins”进入管脚分配视图手动分配:第二种方法是利用tcl脚本文件自动分配.这里我来介绍第二种方法. 1.生成tc ...

  8. TensorFlow 简单实例

    TF 手写体识别简单实例: TensorFlow很适合用来进行大规模的数值计算,其中也包括实现和训练深度神经网络模型.下面将介绍TensorFlow中模型的基本组成部分,同时将构建一个CNN模型来对M ...

  9. Mongodb与mysql语法比较

    Mongodb与mysql语法比较   mongodb与mysql命令对比 传统的关系数据库一般由数据库(database).表(table).记录(record)三个层次概念组成,MongoDB是由 ...

  10. Object-C中的类-类的声明

    1.关键字命名:为了避免与已有的c,C++关键字冲突,ObjectC关键字都有@开始: 如:@classs,@interface,@private,@try,@catch,@protocol等.  2 ...