描述 Description  
  某天,小x在玩一个经典小游戏——zumo。
zumo游戏的规则是,给你一段长度为n的连续的彩色珠子,珠子的颜色不一定完全相同,但是,如果连续相同颜色的珠子大于等于k个,这些珠子就会消失。当然,最初的状态可能不必要直接消掉一些珠子(见样例)。现在你有无穷个所有颜色的珠子,并且你可以在任意地方插入珠子。
现在提出问题:给你一个固定的状态,你最少需要用多少个小球,才能将所有的小球消去。

     
     
  输入格式 Input Format  
  第一行是两个整数,n (1 ≤ n ≤ 100)和k(2 ≤ k ≤5),表示有n个彩色珠子,必须连续有k个以上(包括k个)相同颜色的珠子,这些珠子才会消失。
接下来一行包含n个用空格隔开的整数,每个数在1到100之间,每个数值表示一个珠子的颜色,相同的数字意味着珠子的颜色相同。
     
     
  输出格式 Output Format  
  一个整数,表示最少需要用多少个小球,才能让所有的小球消失。
http://www.cnblogs.com/AndreMouche/archive/2011/02/27/1966504.html
↑大神的程序...
 
状态可以通过记忆化搜索找(复习时间:记忆化搜索就是把找到的东西都存在f[i][j][cnt]里下次用这个值就不用搜了... )
f[i][j][cnt] =x 表示从i到j的珠子前有cnt个连续的紧跟在i前面的与第i个珠子相同的珠子,此时需要x个珠子可以让他们全部消失(BOOM!)
搜索时也是这三个变量(虽然记录的是cnt,但是cnt+1才是此时记录的连续的珠子的个数(加上i位置的珠子))
 
 
 
 
下面是手把手的贴心的和贴代码没两样的题解...聪明人就不要往下看了...(我找不到要点所以就把代码含义叙述了一遍)
 
当f[i][j][cnt] 储存有有意义的值(搜索过了)的时候,直接返回该值;
i=j时 返回k(k个珠子时可以可以消失)-(1+cnt)(把最后剩下来的珠子补成k个)
i>j时,当然不需要珠子啦...返回0
 
连续的珠子数(cnt+1)大于等于k时,则消去这些珠子,搜索从i+1到j个珠子(因为前面多于k的珠子自动消去所以此时f[i+1][j][0]和f[i][j][cnt]等效.....)
小于时,则搜索手动加进去一个珠子的状态,即f[i][j][cnt+1]+1和f[i][j][cnt]等效...
 
此时该搜的都搜了,,就需要dp来找状态的最优值...,在i和j之间找一个w,w位置的小球和i位置的一样......则
f[i][j][cnt] =min(f[i][j][cnt],f[i+1][w-1][0]+f[w][j][min(cnt+1,k-1)]);
这个应该很好理解所以我就不手把手解释了....就是消去中间的珠子然后让两边一样的珠子撞在一起再消一次,正常的祖玛方法......
 
最后把f[i][j][cnt]的值返回
 
有些地方我没写dfs(i,j,cnt)什么的但是不代表不用递归.....某个f[i][j][cnt]如果没值当然要搜索它啊...仙女教母不会自动给你初始化成正确答案的,这是搜索,醒醒!!!!而且搜索之后别忘了记忆化...所以这个鬼畜的东西才叫记忆化搜索...
 
欢迎神犇捉虫...虽然神犇看这么简单的题估计题解都不愿意写...
因为校对无能所以真的有什么错误我不负责任...
 
代码
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
using namespace std;
int n,k;
int a[][]={};
int dd[]={};
int f[][][];
int fff(int b1,int b,int cnt){
int &cur=f[b1][b][cnt];
if(cur!=-) return cur;
if(b1==b){
cur=k-cnt-;
return cur;
}
if(b1>b){
cur=;
return cur;
}
if(cnt<k-){
cur=fff(b1,b,cnt+)+;
}
else{
if(cnt>=k-){
cur=fff(b1+,b,);
}
}
int i;
for(int i=b1+;i<=b;i++){
if(dd[i]!=dd[b1]) continue;
int value=fff(b1+,i-,)+fff(i,b,min(cnt+,k-));
if(value<cur) cur=value;
}
return cur;
}
int main(){
cin>>n>>k;
int tail=-;
int sumn=;
for(int i=;i<=n;i++){
cin>>dd[i];
}
memset(f,-,sizeof(f));
cout<<fff(,n,)<<endl;
return ;
}

[BZOJ1032][P1840] 祖玛 记忆化搜索 动态规划的更多相关文章

  1. 递归 dfs 记忆化搜索 动态规划

    今天做洛谷P1434 [SHOI2002]滑雪 的时候仔细想了想记忆化搜索 现在总结一下 为了描述问题的某一状态,必须用到该状态的上一状态,而描述上一状态,又必须用到上一状态的上一状态……这种用自已来 ...

  2. DFS——>记忆化搜索——>动态规划

    以洛谷P1802  5倍经验日 为例 https://www.luogu.org/problem/show?pid=1802 题目背景 现在乐斗有活动了!每打一个人可以获得5倍经验!absi2011却 ...

  3. Codevs_1017_乘积最大_(划分型动态规划/记忆化搜索)

    描述 http://codevs.cn/problem/1017/ 给出一个n位数,在数字中间添加k个乘号,使得最终的乘积最大. 1017 乘积最大 2000年NOIP全国联赛普及组NOIP全国联赛提 ...

  4. 动态规划——I 记忆化搜索

    Description Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激.可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你.Michael想知道 ...

  5. 动态规划——数字三角形(递归or递推or记忆化搜索)

    动态规划的核心就是状态和状态转移方程. 对于该题,需要用抽象的方法思考,把当前的位置(i,j)看成一个状态,然后定义状态的指标函数d(i,j)为从格子出发时能得到的最大和(包括格子本身的值). 在这个 ...

  6. Vijos 1011 清帝之惑之顺治 记忆录式的动态规划(记忆化搜索)

    背景 顺治帝福临,是清朝入关后的第一位皇帝.他是皇太极的第九子,生于崇德三年(1638)崇德八年八月二ten+six日在沈阳即位,改元顺治,在位18年.卒于顺治十八年(1661),终24岁. 顺治即位 ...

  7. 专题1:记忆化搜索/DAG问题/基础动态规划

      A OpenJ_Bailian 1088 滑雪     B OpenJ_Bailian 1579 Function Run Fun     C HDU 1078 FatMouse and Chee ...

  8. 【BZOJ1048】分割矩阵(记忆化搜索,动态规划)

    [BZOJ1048]分割矩阵(记忆化搜索,动态规划) 题面 BZOJ 洛谷 题解 一个很简单的\(dp\),写成记忆化搜索的形式的挺不错的. #include<iostream> #inc ...

  9. sicily 1176. Two Ends (Top-down 动态规划+记忆化搜索 v.s. Bottom-up 动态规划)

    Description In the two-player game "Two Ends", an even number of cards is laid out in a ro ...

随机推荐

  1. ADO.NET中带参数的Sql语句的陷阱

    1.使用Parameter //利用构造函数方式 ,不推荐这样写 Parameter p =new Parameter("@id",值); cmd.Parameters.Add(p ...

  2. $this->success()传值不完整

    public function manager_doExport() { $search=$_POST['search']; //前台输入2017-12-1,即,$search['starttime' ...

  3. sylk文件

    症状:excel表出现提示:sylk文件...导致excel表不可读取 原因:文件内容有“ ID ” 字段,估计是固定的识别“ID”或“ID_XXXX” 修改方法:将ID中的任意字母换成小写即可 转载 ...

  4. SVMtrain的参数c和g的优化

    SVMtrain的参数c和g的优化 在svm训练过程中,需要对惩罚参数c和核函数的参数g进行优化,选取最好的参数 知道测试集标签的情况下 是让两个参数c和g在某一范围内取离散值,然后,取测试集分类准确 ...

  5. elk系列6之tcp模块的使用【转】

    preface tcp模块的使用场景如下: 有一台服务器A只需要收集一个日志,那么我们就可以不需要在这服务器上安装logstash,我们通过在其他logstash上启用tcp模块,监听某个端口,然后我 ...

  6. css 水平、垂直居中

    水平居中 行内元素 行内元素:(img.span.文字等行内元素),通过在父级元素设置 text-align:center 使元素水平居中. 块级元素 块级元素:(div.p.h1...h6.ul.l ...

  7. 做php网站后台开发,在Linux系统上进行更好吗?【转载】

    1. PHP是开源软件,它在bsd/linux/win下都有很好的正式版及孪生版.并非开发php就必须要在linux下进行.主机服务商们习惯性的把asp与php分为两个主机系列几进行销售.由于asp只 ...

  8. Producer Flow Control 和 vmQueueCursor

    ActiveMQ可以开启或关闭生产者流量控制Producer Flow Control ,基本原理是producer 发送一条消息会收到broker返回的ack响应,当磁盘或内存快满的时候broker ...

  9. acm专题--并查集

    题目来源:http://hihocoder.com/problemset/problem/1066 #1066 : 无间道之并查集 时间限制:20000ms 单点时限:1000ms 内存限制:256M ...

  10. 响应式设计:根据不同设备引不同css样式

    <link rel="stylesheet" media="screen and (max-width:600px)" href="small. ...