[BZOJ4887][TJOI2017]可乐(DP+矩阵快速幂)
题目描述
加里敦星球的人们特别喜欢喝可乐。因而,他们的敌对星球研发出了一个可乐机器人,并且放在了加里敦星球的1号城市上。这个可乐机器人有三种行为: 停在原地,去下一个相邻的城市,自爆。它每一秒都会随机触发一种行为。现 在给加里敦星球城市图,在第0秒时可乐机器人在1号城市,问经过了t秒,可乐机器人的行为方案数是多少?
输入输出格式
输入格式:
第一行输入两个正整数况N,M,N表示城市个数,M表示道路个数。(1 <= N <=30,0 < M < 100)
接下来M行输入u,v,表示u,v之间有一条道路。(1<=u,v <= n)保证两座城市之间只有一条路相连。
最后输入入时间t
输出格式:
输出可乐机器人的行为方案数,答案可能很大,请输出对2017取模后的结果。
输入输出样例
说明
【样例解释】
1 ->爆炸
1 -> 1 ->爆炸
1 -> 2 ->爆炸
1 -> 1 -> 1
1 -> 1 -> 2
1 -> 2 -> 1
1 -> 2 -> 2
1 -> 2 -> 3
【数据范围】
对于20%的pn,有1 < t ≤ 1000
对于100%的pn,有1 < t ≤ 10^6。
裸的矩阵加速DP
#include<cstdio>
#include<cstring>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
using namespace std; const int N=,md=;
struct mat{ int d[][]; mat(){ memset(d,,sizeof(d)); } }a,b,c;
int n,m,u,v,t,ans,cnt,h[N],nxt[N],to[N];
void add(int u,int v){ to[++cnt]=v; nxt[cnt]=h[u]; h[u]=cnt; } void print(mat b){ rep(i,,*n){ rep(j,,*n) printf("%3d",b.d[i][j]); printf("\n"); } } mat mul(mat a,mat b){
mat res;
rep(i,,*n) rep(j,,*n) rep(k,,*n) res.d[i][k]=(res.d[i][k]+a.d[i][j]*b.d[j][k]%md)%md;
return res;
} mat ksm(mat a,int b){
mat res;
rep(i,,*n) res.d[i][i]=;
for (; b; a=mul(a,a),b>>=)
if (b & ) res=mul(res,a);
return res;
} int main(){
scanf("%d%d",&n,&m);
rep(i,,m) scanf("%d%d",&u,&v),add(u,v),add(v,u);
scanf("%d",&t); a.d[][]=a.d[][n+]=;
rep(i,,n){
b.d[i][i]=b.d[i+n][i]=;
for (int j=h[i]; j; j=nxt[j]) b.d[to[j]+n][i]=;
}
rep(i,,n){
b.d[i+n][i+n]=;
for (int j=h[i]; j; j=nxt[j]) b.d[to[j]+n][i+n]=;
}
c=mul(a,ksm(b,t));
rep(i,,n) ans=(ans+c.d[][i])%md;
printf("%d\n",ans);
return ;
}
[BZOJ4887][TJOI2017]可乐(DP+矩阵快速幂)的更多相关文章
- 【BZOJ4887】[TJOI2017]可乐(矩阵快速幂)
[BZOJ4887][TJOI2017]可乐(矩阵快速幂) 题面 BZOJ 洛谷 题解 模板题??? #include<iostream> #include<cstdio> # ...
- bnuoj 34985 Elegant String DP+矩阵快速幂
题目链接:http://acm.bnu.edu.cn/bnuoj/problem_show.php?pid=34985 We define a kind of strings as elegant s ...
- HDU 5434 Peace small elephant 状压dp+矩阵快速幂
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5434 Peace small elephant Accepts: 38 Submissions: ...
- 【BZOJ】2004: [Hnoi2010]Bus 公交线路 状压DP+矩阵快速幂
[题意]n个点等距排列在长度为n-1的直线上,初始点1~k都有一辆公车,每辆公车都需要一些停靠点,每个点至多只能被一辆公车停靠,且每辆公车相邻两个停靠点的距离至多为p,所有公车最后会停在n-k+1~n ...
- 【BZOJ】4861: [Beijing2017]魔法咒语 AC自动机+DP+矩阵快速幂
[题意]给定n个原串和m个禁忌串,要求用原串集合能拼出的不含禁忌串且长度为L的串的数量.(60%)n,m<=50,L<=100.(40%)原串长度为1或2,L<=10^18. [算法 ...
- BZOJ5298 CQOI2018 交错序列 【DP+矩阵快速幂优化】*
BZOJ5298 CQOI2018 交错序列 [DP+矩阵快速幂优化] Description 我们称一个仅由0.1构成的序列为"交错序列",当且仅当序列中没有相邻的1(可以有相邻 ...
- Codeforces 621E Wet Shark and Block【dp + 矩阵快速幂】
题意: 有b个blocks,每个blocks都有n个相同的0~9的数字,如果从第一个block选1,从第二个block选2,那么就构成12,问对于给定的n,b有多少种构成方案使最后模x的余数为k. 分 ...
- codeforces E. Okabe and El Psy Kongroo(dp+矩阵快速幂)
题目链接:http://codeforces.com/contest/821/problem/E 题意:我们现在位于(0,0)处,目标是走到(K,0)处.每一次我们都可以从(x,y)走到(x+1,y- ...
- [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂)
[BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂) 题面 阿申准备报名参加GT考试,准考证号为N位数X1X2-.Xn,他不希望准考证号上出现不吉利的数字.他的不吉利数学A ...
随机推荐
- 【CodeForces】901 B. GCD of Polynomials
[题目]B. GCD of Polynomials [题意]给定n,要求两个最高次项不超过n的多项式(第一个>第二个),使得到它们GCD的辗转次数为n.n<=150. [算法]构造 [题解 ...
- 关于Http协议、ASP.NET 核心知识(2)
简介HTTP (对于http协议的描述我前部分有写,但基于保证文档独立完整性的原则,我再写一遍.反正又不花钱.) 这货的学名叫:超文本传输协议 英文名字:(HTTP,HyperText Transfe ...
- JSP和Servlet面试题
1.讲下servlet的执行流程. Servlet的执行流程也就是servlet的生命周期,当服务器启动的时候生命周期开始,然后通过init()<启动顺序根据web.xml里的startup-o ...
- nth-child,nth-last-child,only-child,nth-of-type,nth-last-of-type,only-of-type,first-of-type,last-of-type,first-child,last-child伪类区别和用法
我将这坨伪类分成三组,第一组:nth-child,nth-last-child,only-child第二组:nth-of-type,nth-last-of-type,第三组:first-of-tpye ...
- spring boot 自定义属性覆盖application文件属性
参考 Spring boot源码分析-ApplicationListener应用环境: https://blog.csdn.net/jamet/article/details/78042486 加载a ...
- Django 自定义分页类
分页类代码: class Page(object): ''' 自定义分页类 可以实现Django ORM数据的的分页展示 输出HTML代码: 使用说明: from utils import mypag ...
- git常用命令速查表【转】
- Ubuntu 上更新 Flash 插件
2018-02-19 12:08:28 更新: 现在的 Google Chrome 浏览器自带了 Flash 支持,无需安装.而 Firefox 浏览器没有提供 Flash 支持,所以用 Firefo ...
- 做php网站后台开发,在Linux系统上进行更好吗?【转载】
1. PHP是开源软件,它在bsd/linux/win下都有很好的正式版及孪生版.并非开发php就必须要在linux下进行.主机服务商们习惯性的把asp与php分为两个主机系列几进行销售.由于asp只 ...
- NTP算法
网络时间协议 由特拉华大学的David L. Mills热心提供.http://www.eecis.udel.edu/~mills mills@udel.edu 由Reinhard v. Hanxle ...