「Luogu4321」随机游走

题目描述

有一张 \(n\) 个点 \(m\) 条边的无向图,\(Q\) 组询问,每次询问给出一个出发点和一个点集 \(S\) ,求从出发点出发随机游走走遍这个点集的期望步数。

\(1 \leq n \leq 18, 1 \leq Q \leq 10^5\)

解题思路 :

听说是 \(\text{pkuwc2018d2t3}\) 加强版?但是原题时限是1s,各种卡不进去感觉一定要写 \(\text{Min-Max}\) 容斥,不过反正我今年听指导建议没报 \(\text{pkuwc}\) ,结果 \(\text{thuwc}\) 没 \(\text{py}\) 上 。

丧心病狂的出题人肯定是要我们 \(O(1)\) 回答询问了,不过感觉暴力还是蛮好想的,网上以前看到有大佬说过期望要倒着推,然后状压一波就出来了。设 \(f(S, u)\) 表示当前已经走遍了点集 \(S\) 接下来走遍全图的期望。这样定义的好处在于终止状态方便表示,直接认为点集外的点已经走过就可以了,如果正着定义走遍点集 \(S\) 的期望的话,终止状态的计算就需要一堆集合再算上对应的概率了。于是显然有

\[f(S, u) = \frac{1}{deg_u} \sum_{edge(u, v)} f(S|v, v) + 1
\]

特别的 \(f(S, i) = 0\) 当 \(S\) 是全集 \(\{1..n\}\) 的时候。

这个式子的转移还有环诶,所以还要高斯消元来解,一眼看上去复杂度是 \(O((n\times2^n)^3)\),复杂度爆炸。

冷静分析一下,并不是所有的转移都会成环,当满足 \(v \notin S\) 的时候,\(S\) 是 \(S|v\) 的真子集,只考虑这样的转移的话转移的形态是一个 \(\text{DAG}\) ,更准确的说是一个分层图。

这启发我们可以来分层求解,把互不相交的环拆开来考虑,而不是一起高斯消元,不妨变换一下转移的式子。

\[f(S, u) = \frac{1}{deg_u} \sum_{edge(u, v), v \notin S} f(S|v, v) + \sum_{edge(u, v), v \in S} f(S, v) + 1
\]

此时成环的转移只有后面那个式子,于是我们可以一层一层计算,对于每一个 \(S\) ,先将前面那个式子的贡献记录在矩阵里面,暴力消元后面那个式子这样每次消元的矩阵大小只有 \(n^2\) 级别,总复杂度优化到 \(O(2^n\times n^3)。\)

另外吐槽一下:我的高斯消元写法好像不加剪枝就被卡常数了,今天做了一天的题没有一道不被卡常,怕是联赛要被卡成暴力分。

/*program by mangoyang*/
#pragma GCC optimize("Ofast","inline","-ffast-math")
#pragma GCC target("avx,sse2,sse3,sse4,mmx")
#include<bits/stdc++.h>
#define inf (0x7f7f7f7f)
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
int ch = 0, f = 0; x = 0;
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
if(f) x = -x;
} const int N = 25, mod = 998244353;
typedef int Matrix[N][N];
vector<int> g[N];
Matrix a; int Ans[(1<<20)+5][N], n, e;
inline void up(int &x, int y){ (x += y) %= mod; }
inline void del(int &x, int y){ x = (x + y >= 0) ? x + y : x + y + mod; }
inline int Pow(int a, int b){
int ans = 1;
for(; b; b >>= 1, a = 1ll * a * a % mod)
if(b & 1) ans = 1ll * ans * a % mod;
return ans;
}
inline void Gauss(Matrix &a){
int tmp, f;
for(int i = 1; i <= n; i++){
int r = i;
for(int j = i + 1; j <= n; j++) if(a[j][i] > a[i][i]) r = j;
for(int j = i; j <= n + 1; j++) swap(a[i][j], a[r][j]);
if(!a[i][i]) continue;
tmp = Pow(a[i][i], mod - 2);
for(int j = i + 1; j <= n; j++){
f = 1ll * a[j][i] * tmp % mod;
for(int k = i; k <= n + 1; k++)
del(a[j][k], 1ll * -a[i][k] * f % mod);
}
}
for(int i = n; i >= 1; i--){
for(int j = i + 1; j <= n; j++)
del(a[i][n+1], 1ll * -a[j][n+1] * a[i][j] % mod);
a[i][n+1] = 1ll * a[i][n+1] * Pow(a[i][i], mod - 2) % mod;
}
}
int main(){
read(n), read(e);
for(int i = 1, x, y; i <= e; i++)
read(x), read(y), g[x].push_back(y), g[y].push_back(x);
for(int i = 1; i <= n; i++) Ans[(1<<n)-1][i] = 0;
for(int s = (1 << n) - 2; s; s--){
for(int i = 1; i <= n + 1; i++)
for(int j = 1; j <= n + 1; j++) a[i][j] = 0;
for(int i = 1; i <= n; i++) if((1 << i - 1) & s){
int tmp = Pow(g[i].size(), mod - 2);
for(int j = 0; j < g[i].size(); j++){
int v = g[i][j];
if(!((1 << v - 1) & s)) up(a[i][n+1], Ans[s|(1<<v-1)][v]);
else a[i][v] = (-tmp + mod) % mod;
}
a[i][n+1] = 1ll * tmp * a[i][n+1] % mod;
a[i][n+1] = (a[i][n+1] + 1) % mod, a[i][i] = 1;
}
Gauss(a);
for(int i = 1; i <= n; i++) Ans[s][i] = a[i][n+1];
}
int q; read(q);
while(q--){
int num = 0, s, all = (1 << n) - 1; read(num);
for(int i = 1, x; i <= num; i++) read(x), all ^= (1 << x - 1);
read(s), all |= (1 << s - 1), printf("%d\n", Ans[all][s]);
}
return 0;
}

「Luogu4321」随机游走的更多相关文章

  1. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

  2. 「PKUWC2018」随机游走(min-max容斥+FWT)

    「PKUWC2018」随机游走(min-max容斥+FWT) 以后题目都换成这种「」形式啦,我觉得好看. 做过重返现世的应该看到就想到 \(min-max\) 容斥了吧. 没错,我是先学扩展形式再学特 ...

  3. LOJ2542. 「PKUWC2018」随机游走

    LOJ2542. 「PKUWC2018」随机游走 https://loj.ac/problem/2542 分析: 为了学习最值反演而做的这道题~ \(max{S}=\sum\limits_{T\sub ...

  4. LOJ #2542「PKUWC2018」随机游走

    $ Min$-$Max$容斥真好用 $ PKUWC$滚粗后这题一直在$ todolist$里 今天才补掉..还要更加努力啊.. LOJ #2542 题意:给一棵不超过$ 18$个节点的树,$ 5000 ...

  5. 「PKUWC2018」随机游走

    题目 我暴力过啦 看到这样的东西我们先搬出来\(min-max\)容斥 我们设\(max(S)\)表示\(x\)到达点集\(S\)的期望最晚时间,也就是我们要求的答案了 显然我们也很难求出这个东西,但 ...

  6. loj2542「PKUWC2018」随机游走

    题目描述 给定一棵 nn 个结点的树,你从点 xx 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 QQ 次询问,每次询问给定一个集合 SS,求如果从 xx 出发一直随机游走,直到点集 SS ...

  7. 【LOJ2542】「PKUWC2018」随机游走

    题意 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一 ...

  8. loj#2542. 「PKUWC2018」随机游走(树形dp+Min-Max容斥)

    传送门 首先,关于\(Min-Max\)容斥 设\(S\)为一个点的集合,每个点的权值为走到这个点的期望时间,则\(Max(S)\)即为走遍这个集合所有点的期望时间,\(Min(S)\)即为第一次走到 ...

  9. LOJ2542. 「PKUWC2018」随机游走【概率期望DP+Min-Max容斥(最值反演)】

    题面 思路 我们可以把到每个点的期望步数算出来取max?但是直接算显然是不行的 那就可以用Min-Max来容斥一下 设\(g_{s}\)是从x到s中任意一个点的最小步数 设\(f_{s}\)是从x到s ...

随机推荐

  1. LintCode 190: Next Permutation

    LintCode 190: Next Permutation 题目描述 给定一个若干整数的排列,给出按正数大小进行字典序从小到大排序后的下一个排列. 如果没有下一个排列,则输出字典序最小的序列. 样例 ...

  2. UVA - 10494 If We Were a Child Again

    用java写的大数基本操作,java要求的格式比较严谨. import java.util.*; import java.math.*; public class Main { public stat ...

  3. 2018中国科大自主测试-B卷部分试题

    数学部分 z = e^{\frac{2i\pi}{3}}, 求z^{2018}. \sin(2x) = \frac 35, 求\frac{\tan(x+15^{\circ})}{\tan(x-15^{ ...

  4. python之yagmail库笔记

    1. yagmail是啥 yagmail是给正常人用的,封装的比较彻底的一个python邮件库,发送接收邮件只需要几行代码,炒鸡简单. 2. 安装 使用pip安装,炒鸡简单: pip install ...

  5. 33、re的match和search区别?

    1.match()函数只检测RE是不是在string的开始位置匹配,search()会扫描整个string查找匹配:2.也就是说match()只有在0位置匹配成功的话才有返回,如果不是开始位置匹配成功 ...

  6. 打表找规律C - Insertion Sort Gym - 101955C

    题目链接:https://cn.vjudge.net/contest/273377#problem/C 给你 n,m,k. 这个题的意思是给你n个数,在对前m项的基础上排序的情况下,问你满足递增子序列 ...

  7. C++之模板编程

    当我们越来越多的使用C++的特性, 将越来越多的问题和事物抽象成对象时, 我们不难发现:很多对象都具有共性. 比如 数值可以增加.减少:字符串也可以增加减少. 它们的动作是相似的, 只是对象的类型不同 ...

  8. 使用Jackson来实现Java对象与JSON的相互转换的教程

    一.入门Jackson中有个ObjectMapper类很是实用,用于Java对象与JSON的互换.1.JAVA对象转JSON[JSON序列化] 1 2 3 4 5 6 7 8 9 10 11 12 1 ...

  9. python_线程、进程和协程

    线程 Threading用于提供线程相关的操作,线程是应用程序中工作的最小单元. #!/usr/bin/env python #coding=utf-8 __author__ = 'yinjia' i ...

  10. Python+Selenium 自动化实现实例-模块化调用

    public 目录存一些公共模块,供用例调用.login.py 内容如下: # coding=utf-8 import time # login def login(driver): driver.f ...