让我们定义d​n​​为:d​n​​=p​n+1​​−p​n​​,其中p​i​​是第i个素数。显然有d​1​​=1,且对于n>1有d​n​​是偶数。“素数对猜想”认为“存在无穷多对相邻且差为2的素数”。

现给定任意正整数N(<10​5​​),请计算不超过N的满足猜想的素数对的个数。

输入格式:

输入在一行给出正整数N

输出格式:

在一行中输出不超过N的满足猜想的素数对的个数。

输入样例:

20

输出样例:

4
#include <iostream>
#include <math.h>
using namespace std;
int a[];
int prime(int n)
{
int k=sqrt(n);
int i;
if(n==||n==)
return ;
for(i=;i<=k;i++)
{
if(n%i==)
{
return ;
}
}
return ;
}
int main()
{
int n;
cin>>n;
int i;
int j=;
for(i=;i<=n;i++)
{
if(prime(i))
a[j++]=i;
else;
}
int s=;
for(i=;i<=j;i++)
{
if(a[i]-a[i-]==)
s++;
}
cout<<s<<endl;
}

pat 素数对猜想的更多相关文章

  1. PAT 乙级 1007. 素数对猜想 (20) c++ 筛选法求素数

    PAT 乙级 1007. 素数对猜想 (20) c++ 筛选法求素数 让我们定义 dn 为:dn = pn+1 - pn,其中 pi 是第i个素数.显然有 d1=1 且对于n>1有 dn 是偶数 ...

  2. PAT自测_打印沙漏、素数对猜想、数组元素循环右移、数字加倍重排、机器洗牌

    -自测1. 打印沙漏() 本题要求你写个程序把给定的符号打印成沙漏的形状.例如给定17个“*”,要求按下列格式打印 ***** *** * *** ***** 所谓“沙漏形状”,是指每行输出奇数个符号 ...

  3. PAT 1007. 素数对猜想 (20)

    让我们定义 dn 为:dn = pn+1 - pn,其中 pi 是第i个素数.显然有 d1=1 且对于n>1有 dn 是偶数."素数对猜想"认为"存在无穷多对相邻且 ...

  4. PAT乙级 1007. 素数对猜想 (20)

    1007. 素数对猜想 (20) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue 让我们定义 dn 为:dn = ...

  5. PAT (Basic Level) Practise:1007. 素数对猜想

    [题目链接] 让我们定义 dn 为:dn = pn+1 - pn,其中 pi 是第i个素数.显然有 d1=1 且对于n>1有 dn 是偶数.“素数对猜想”认为“存在无穷多对相邻且差为2的素数”. ...

  6. [C++]PAT乙级1007.素数对猜想 (20/20)

    /* 1007. 素数对猜想 (20) 让我们定义 dn 为:dn = pn+1 - pn,其中 pi 是第i个素数.显然有 d1=1 且对于n>1有 dn 是偶数.“素数对猜想”认为“存在无穷 ...

  7. PAT 1007 素数对猜想

    https://pintia.cn/problem-sets/994805260223102976/problems/994805317546655744 让我们定义 d~n~ 为:d~n~ = p~ ...

  8. PAT 1007 素数对猜想(20)

    1007 素数对猜想(20 分) 让我们定义d​n​​为:d​n​​=p​n+1​​−p​n​​,其中p​i​​是第i个素数.显然有d​1​​=1,且对于n>1有d​n​​是偶数."素 ...

  9. PAT B1007 素数对猜想 (20 分)

    让我们定义d​n​​为:d​n​​=p​n+1​​−p​n​​,其中p​i​​是第i个素数.显然有d​1​​=1,且对于n>1有d​n​​是偶数.“素数对猜想”认为“存在无穷多对相邻且差为2的素 ...

随机推荐

  1. 【leetcode 简单】第三题 回文数

    判断一个整数是否是回文数.回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数. 示例 1: 输入: 121 输出: true 示例 2: 输入: -121 输出: false 解释: 从左向 ...

  2. vps建站教程 CentOS6如何安装配置FTP服务器

    通过之前的几篇文章,我们都知道了如何配置PHP环境,也知道如何保护我们的vps以及如何绑定多个域名建设多个网站.有时候我们为了让我们的朋友也能用我们的vps建站又不想给他们太多权限,有时候我们想要当个 ...

  3. python requests模块手动设置cookies的几种方式

    def use_cookie(self): cookies="YF-V5-G0=731b77772529a1f49eac82a9d2c2957f; SUB=_2AkMsEgief8NxqwJ ...

  4. 94.Binary Tree Inorder Traversal---二叉树中序非递归遍历

    题目链接 题目大意:中序遍历二叉树.先序见144,后序见145. 法一:DFS,没啥说的,就是模板DFS.代码如下(耗时1ms): public List<Integer> inorder ...

  5. 一致性hash理解

    在做memcached分布式集群时往往要用到一致性hash算法来调节缓存数据的分布. 通常的hash算法是以服务器数量N作为模数,使用key%N的值来获得最终位置,显然当服务器数量发生变化即N发生变化 ...

  6. HBase原理解析(转)

    本文属于转载,原文链接:http://www.aboutyun.com/thread-7199-1-1.html   前提是大家至少了解HBase的基本需求和组件. 从大家最熟悉的客户端发起请求开始讲 ...

  7. Maven整合Spring与Solr

    首先,在maven的pom.xml文件中配置对spring和solrj客户端的依赖: <project xmlns="http://maven.apache.org/POM/4.0.0 ...

  8. Java开发必用的工具包

    Java是最流行的开源语言之一. 有赖于Java的开源,涌现出一大批优秀的开源框架,基本涵盖了开发中的方方面面,让程序员可以专注于自己的业务逻辑. ​ 今天,我们就来聊聊在开发中,经常被我们所忽略的[ ...

  9. python【项目】:基于socket的FTP服务器

    功能要求 1. 用户加密认证 2. 服务端采用 SocketServer实现,支持多客户端连接 3. 每个用户有自己的家目录且只能访问自己的家目录 4. 对用户进行磁盘配额.不同用户配额可不同 5. ...

  10. (二)Spring 之IOC 详解

    第一节:spring ioc 简介 IOC(控制反转:Inversion of Control),又称作依赖注入dependency injection( DI ),是一种重要的面向对象编程的法则来削 ...