Codeforces Round #209 (Div. 2)A贪心 B思路 C思路+快速幂
1 second
256 megabytes
standard input
standard output
Simon has a rectangular table consisting of n rows and m columns. Simon numbered the rows of the table from top to bottom starting from one and the columns — from left to right starting from one. We'll represent the cell on the x-th row and the y-th column as a pair of numbers (x, y). The table corners are cells: (1, 1), (n, 1), (1, m), (n, m).
Simon thinks that some cells in this table are good. Besides, it's known that no good cell is the corner of the table.
Initially, all cells of the table are colorless. Simon wants to color all cells of his table. In one move, he can choose any good cell of table (x1, y1), an arbitrary corner of the table (x2, y2) and color all cells of the table (p, q), which meet both inequations: min(x1, x2) ≤ p ≤ max(x1, x2), min(y1, y2) ≤ q ≤ max(y1, y2).
Help Simon! Find the minimum number of operations needed to color all cells of the table. Note that you can color one cell multiple times.
The first line contains exactly two integers n, m (3 ≤ n, m ≤ 50).
Next n lines contain the description of the table cells. Specifically, the i-th line contains m space-separated integers ai1, ai2, ..., aim. If aij equals zero, then cell (i, j) isn't good. Otherwise aij equals one. It is guaranteed that at least one cell is good. It is guaranteed that no good cell is a corner.
Print a single number — the minimum number of operations Simon needs to carry out his idea.
3 3
0 0 0
0 1 0
0 0 0
4
4 3
0 0 0
0 0 1
1 0 0
0 0 0
2
In the first sample, the sequence of operations can be like this:

- For the first time you need to choose cell (2, 2) and corner (1, 1).
- For the second time you need to choose cell (2, 2) and corner (3, 3).
- For the third time you need to choose cell (2, 2) and corner (3, 1).
- For the fourth time you need to choose cell (2, 2) and corner (1, 3).
In the second sample the sequence of operations can be like this:

- For the first time you need to choose cell (3, 1) and corner (4, 3).
- For the second time you need to choose cell (2, 3) and corner (1, 1).
题意:n*m的矩阵涂色 每次选取两个点 1个顶点 1个标记为1的点 形成矩形并涂色 问最少要涂几次使得n*m的矩阵全部涂满
题解: 贪心 特判顶点,边界
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <stack>
#include <queue>
#include <cmath>
#include <map>
#define ll __int64
#define mod 1000000007
#define dazhi 2147483647
using namespace std;
int n,m;
int mp[][];
int main()
{
scanf("%d %d",&n,&m);
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
scanf("%d",&mp[i][j]);
}
}
if(mp[][m]==||mp[n][m]==||mp[][]==||mp[n][]==)
{
printf("1\n");
return ;
}
for(int i=;i<=n-;i++){
if(mp[i][]==)
{
printf("2\n");
return ;
}
}
for(int i=;i<=n-;i++){
if(mp[i][m]==)
{
printf("2\n");
return ;
}
}
for(int i=;i<=m-;i++){
if(mp[][i]==)
{
printf("2\n");
return ;
}
}
for(int i=;i<=m-;i++){
if(mp[n][i]==)
{
printf("2\n");
return ;
}
}
printf("4\n");
return ;
}
1 second
256 megabytes
standard input
standard output
A permutation p is an ordered group of numbers p1, p2, ..., pn, consisting of n distinct positive integers, each is no more than n. We'll define number n as the length of permutation p1, p2, ..., pn.
Simon has a positive integer n and a non-negative integer k, such that 2k ≤ n. Help him find permutation a of length 2n, such that it meets this equation:
.
The first line contains two integers n and k (1 ≤ n ≤ 50000, 0 ≤ 2k ≤ n).
Print 2n integers a1, a2, ..., a2n — the required permutation a. It is guaranteed that the solution exists. If there are multiple solutions, you can print any of them.
1 0
1 2
2 1
3 2 1 4
4 0
2 7 4 6 1 3 5 8
Record |x| represents the absolute value of number x.
In the first sample |1 - 2| - |1 - 2| = 0.
In the second sample |3 - 2| + |1 - 4| - |3 - 2 + 1 - 4| = 1 + 3 - 2 = 2.
In the third sample |2 - 7| + |4 - 6| + |1 - 3| + |5 - 8| - |2 - 7 + 4 - 6 + 1 - 3 + 5 - 8| = 12 - 12 = 0.
题意:构造a数列 使得满足上述的式子
题解:1~2n排列如下
(2n 2n-1) (2n-2 2n-3) ...... (4 3)(2 1)
=> 1 ,1 .....1,1
根据k 的大小 反转k对 输出即可
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <stack>
#include <queue>
#include <cmath>
#include <map>
#define ll __int64
#define mod 1000000007
#define dazhi 2147483647
using namespace std;
ll n,k;
struct node
{
ll l,r;
ll w;
}N[];
int main()
{
scanf("%I64d %I64d",&n,&k);
ll exm=n*;
for(int i=;i<=n;i++)
{
N[i].l=exm--;
N[i].r=exm--;
N[i].w=;
}
for(int i=;i<=n;i++)
{
if(k==)
break;
if(k>=N[i].w)
{
k-=N[i].w;
swap(N[i].l,N[i].r);
}
}
for(int i=;i<=n;i++)
printf("%I64d %I64d ",N[i].l,N[i].r);
return ;
}
1 second
256 megabytes
standard input
standard output
Simon has a prime number x and an array of non-negative integers a1, a2, ..., an.
Simon loves fractions very much. Today he wrote out number
on a piece of paper. After Simon led all fractions to a common denominator and summed them up, he got a fraction:
, where number t equals xa1 + a2 + ... + an. Now Simon wants to reduce the resulting fraction.
Help him, find the greatest common divisor of numbers s and t. As GCD can be rather large, print it as a remainder after dividing it by number 1000000007 (109 + 7).
The first line contains two positive integers n and x (1 ≤ n ≤ 105, 2 ≤ x ≤ 109) — the size of the array and the prime number.
The second line contains n space-separated integers a1, a2, ..., an (0 ≤ a1 ≤ a2 ≤ ... ≤ an ≤ 109).
Print a single number — the answer to the problem modulo 1000000007 (109 + 7).
2 2
2 2
8
3 3
1 2 3
27
2 2
29 29
73741817
4 5
0 0 0 0
1
In the first sample
. Thus, the answer to the problem is 8.
In the second sample,
. The answer to the problem is 27, as 351 = 13·27, 729 = 27·27.
In the third sample the answer to the problem is 1073741824 mod 1000000007 = 73741817.
In the fourth sample
. Thus, the answer to the problem is 1.
题意:
通分之后 求分子与分母的gcd 对1e9+7取模
题解:找到分子各项中最小的指数 并标记指数存在的次数 从低指数向上不断进位
注意所求指数应当小于等于分母的指数 之后用到快速幂。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <stack>
#include <queue>
#include <cmath>
#include <map>
#define ll __int64
#define mod 1000000007
#define dazhi 2147483647
using namespace std;
ll n,x;
ll a[];
ll b[];
map<ll,ll>mp;
ll sum;
ll gcd(ll a,ll b){return b==?a:gcd(b,a%b);}
ll quickmod(ll aa,ll bb)
{
ll re=;
while(bb)
{
if(bb&)
re=(re*aa)%mod;
aa=(aa*aa)%mod;
bb=bb>>;
}
return re%mod;
}
int main()
{
sum=;
int jishu=;
mp.clear();
scanf("%I64d %I64d",&n,&x);
for(ll i=;i<=n;i++)
{
scanf("%I64d",&a[i]);
sum+=a[i];
}
for(ll i=;i<=n;i++)
{
ll exm=sum-a[i];
if(mp[exm]==)
{
b[jishu++]=exm;
}
mp[exm]++;
}
sort(b,b+jishu);
ll ans=b[];
while()
{
if(mp[ans]%x==){
mp[ans+]+=(mp[ans]/x);
ans++;
}
else
break;
}
if(ans>sum)
ans=sum;
printf("%I64d\n",(quickmod(x,ans)%mod));
return ;
}
Codeforces Round #209 (Div. 2)A贪心 B思路 C思路+快速幂的更多相关文章
- Codeforces Round #369 (Div. 2) D. Directed Roads —— DFS找环 + 快速幂
题目链接:http://codeforces.com/problemset/problem/711/D D. Directed Roads time limit per test 2 seconds ...
- Codeforces Round #307 (Div. 2) D. GukiZ and Binary Operations 矩阵快速幂优化dp
D. GukiZ and Binary Operations time limit per test 1 second memory limit per test 256 megabytes inpu ...
- Codeforces Round #546 (Div. 2) D 贪心 + 思维
https://codeforces.com/contest/1136/problem/D 贪心 + 思维 题意 你面前有一个队列,加上你有n个人(n<=3e5),有m(m<=个交换法则, ...
- Codeforces Round #547 (Div. 3) F 贪心 + 离散化
https://codeforces.com/contest/1141/problem/F2 题意 一个大小为n的数组a[],问最多有多少个不相交的区间和相等 题解 离散化用值来做,贪心选择较前的区间 ...
- Codeforces Round #595 (Div. 3)D1D2 贪心 STL
一道用STL的贪心,正好可以用来学习使用STL库 题目大意:给出n条可以内含,相交,分离的线段,如果重叠条数超过k次则为坏点,n,k<2e5 所以我们贪心的想我们从左往右遍历,如果重合部分条数超 ...
- Codeforces Round #554 (Div. 2) D 贪心 + 记忆化搜索
https://codeforces.com/contest/1152/problem/D 题意 给你一个n代表合法括号序列的长度一半,一颗有所有合法括号序列构成的字典树上,选择最大的边集,边集的边没 ...
- Codeforces Round #303 (Div. 2) D 贪心
D. Queue time limit per test 1 second memory limit per test 256 megabytes input standard input outpu ...
- Codeforces Round #545 (Div. 2) D 贪心 + kmp
https://codeforces.com/contest/1138/problem/D 题意 两个01串s和t,s中字符能相互交换,问最多能得到多少个(可交叉)的t 题解 即将s中的01塞进t中, ...
- Codeforces Round #547 (Div. 3) G 贪心
https://codeforces.com/contest/1141/problem/G 题意 在一棵有n个点的树上给边染色,连在同一个点上的边颜色不能相同,除非舍弃掉这个点,问最少需要多少种颜色来 ...
随机推荐
- HDU-1053:Advanced Fruits(LCS+路径保存)
链接:HDU-1053:Advanced Fruits 题意:将两个字符串合成一个串,不改变原串的相对顺序,可将相同字母合成一个,求合成后最短的字符串. 题解:LCS有三种状态转移方式,将每个点的状态 ...
- xshell—实现Linux与Windows之间的文件传递
在Windows系统上,通过xshell连接Linux系统. 第一种使用方式:从Linux系统上下载文件到Windows系统. 准备工作: $ sudo apt-get install lrzsz 安 ...
- moment.js学习总结
一. 介绍: moment.js不依赖任何第三方库,支持字符串.Date.时间戳以及数组等格式,可以像PHP的date()函数一样,格式化日期时间,计算相对时间,获取特定时间后的日期时间等等.下面是一 ...
- EF动态排序
转载的代码,改天再研究 public PageData<T> FindAll(int PageIndex, int PageSize, Expression<Func<T, b ...
- win8平板APP开发的教程文章
http://blog.csdn.net/tcjiaan/article/details/7866595 基于C#的Metro工程如何引用C++的动态库——FIleNotFound解决办法: http ...
- 某客的《微信小程序》从基础到实战视频教程
第 1 部分 微信小程序从基础到实战课程概要 第 1 节 微信小程序从基础到实战课程概要 1.1微信小程序从基础到实战课程概要 第 2 部分 初识微信小程序 第 1 节 微信小程序简 ...
- Netty系列学习
Netty系列之Netty高性能之道 Netty系列之Netty线程模型 Netty系列之Netty 服务端创建 Netty系列之Netty编解码框架分析 Netty系列之Netty百万级推送服务设计 ...
- Monkey自动化测试
Monkey简介 语法参数 实际应用 一.Monkey简介 1.什么是Monkey? 基于健壮性.稳定性的考虑:如果将一个应用交给一个人长时间不停地乱点乱按,程序会怎么样? 有时候运行相同系列的测试, ...
- C# 为VB6.0程序模拟串口数据
为VB6.0编写程序模拟数据测试使用. 一.VB6.0 控件MSComm,来发送接收串口数据 CommPort 属性设置并返回通讯端口号,虚拟端口为COM2. Settings 属性设置并返回端口的波 ...
- 【bzoj5157】[Tjoi2014]上升子序列 树状数组
题目描述 求一个数列本质不同的至少含有两个元素的上升子序列数目模10^9+7的结果. 题解 树状数组 傻逼题,离散化后直接使用树状数组统计即可.由于要求本质不同,因此一个数要减去它前一次出现时的贡献( ...