A. Table
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Simon has a rectangular table consisting of n rows and m columns. Simon numbered the rows of the table from top to bottom starting from one and the columns — from left to right starting from one. We'll represent the cell on the x-th row and the y-th column as a pair of numbers (x, y). The table corners are cells: (1, 1), (n, 1), (1, m), (n, m).

Simon thinks that some cells in this table are good. Besides, it's known that no good cell is the corner of the table.

Initially, all cells of the table are colorless. Simon wants to color all cells of his table. In one move, he can choose any good cell of table (x1, y1), an arbitrary corner of the table (x2, y2) and color all cells of the table (p, q), which meet both inequations: min(x1, x2) ≤ p ≤ max(x1, x2), min(y1, y2) ≤ q ≤ max(y1, y2).

Help Simon! Find the minimum number of operations needed to color all cells of the table. Note that you can color one cell multiple times.

Input

The first line contains exactly two integers n, m (3 ≤ n, m ≤ 50).

Next n lines contain the description of the table cells. Specifically, the i-th line contains m space-separated integers ai1, ai2, ..., aim. If aij equals zero, then cell (i, j) isn't good. Otherwise aij equals one. It is guaranteed that at least one cell is good. It is guaranteed that no good cell is a corner.

Output

Print a single number — the minimum number of operations Simon needs to carry out his idea.

Examples
Input
3 3
0 0 0
0 1 0
0 0 0
Output
4
Input
4 3
0 0 0
0 0 1
1 0 0
0 0 0
Output
2
Note

In the first sample, the sequence of operations can be like this:

  • For the first time you need to choose cell (2, 2) and corner (1, 1).
  • For the second time you need to choose cell (2, 2) and corner (3, 3).
  • For the third time you need to choose cell (2, 2) and corner (3, 1).
  • For the fourth time you need to choose cell (2, 2) and corner (1, 3).

In the second sample the sequence of operations can be like this:

  • For the first time you need to choose cell (3, 1) and corner (4, 3).
  • For the second time you need to choose cell (2, 3) and corner (1, 1).

题意:n*m的矩阵涂色  每次选取两个点 1个顶点 1个标记为1的点 形成矩形并涂色 问最少要涂几次使得n*m的矩阵全部涂满

题解: 贪心 特判顶点,边界

 #include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <stack>
#include <queue>
#include <cmath>
#include <map>
#define ll __int64
#define mod 1000000007
#define dazhi 2147483647
using namespace std;
int n,m;
int mp[][];
int main()
{
scanf("%d %d",&n,&m);
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
scanf("%d",&mp[i][j]);
}
}
if(mp[][m]==||mp[n][m]==||mp[][]==||mp[n][]==)
{
printf("1\n");
return ;
}
for(int i=;i<=n-;i++){
if(mp[i][]==)
{
printf("2\n");
return ;
}
}
for(int i=;i<=n-;i++){
if(mp[i][m]==)
{
printf("2\n");
return ;
}
}
for(int i=;i<=m-;i++){
if(mp[][i]==)
{
printf("2\n");
return ;
}
}
for(int i=;i<=m-;i++){
if(mp[n][i]==)
{
printf("2\n");
return ;
}
}
printf("4\n");
return ;
}
B. Permutation
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

A permutation p is an ordered group of numbers p1,   p2,   ...,   pn, consisting of n distinct positive integers, each is no more than n. We'll define number n as the length of permutation p1,   p2,   ...,   pn.

Simon has a positive integer n and a non-negative integer k, such that 2k ≤ n. Help him find permutation a of length 2n, such that it meets this equation: .

Input

The first line contains two integers n and k (1 ≤ n ≤ 50000, 0 ≤ 2k ≤ n).

Output

Print 2n integers a1, a2, ..., a2n — the required permutation a. It is guaranteed that the solution exists. If there are multiple solutions, you can print any of them.

Examples
Input
1 0
Output
1 2
Input
2 1
Output
3 2 1 4
Input
4 0
Output
2 7 4 6 1 3 5 8
Note

Record |x| represents the absolute value of number x.

In the first sample |1 - 2| - |1 - 2| = 0.

In the second sample |3 - 2| + |1 - 4| - |3 - 2 + 1 - 4| = 1 + 3 - 2 = 2.

In the third sample |2 - 7| + |4 - 6| + |1 - 3| + |5 - 8| - |2 - 7 + 4 - 6 + 1 - 3 + 5 - 8| = 12 - 12 = 0.

题意:构造a数列 使得满足上述的式子

题解:1~2n排列如下

(2n  2n-1) (2n-2 2n-3) ......   (4 3)(2 1)

=>  1 ,1 .....1,1

根据k 的大小 反转k对 输出即可

 #include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <stack>
#include <queue>
#include <cmath>
#include <map>
#define ll __int64
#define mod 1000000007
#define dazhi 2147483647
using namespace std;
ll n,k;
struct node
{
ll l,r;
ll w;
}N[];
int main()
{
scanf("%I64d %I64d",&n,&k);
ll exm=n*;
for(int i=;i<=n;i++)
{
N[i].l=exm--;
N[i].r=exm--;
N[i].w=;
}
for(int i=;i<=n;i++)
{
if(k==)
break;
if(k>=N[i].w)
{
k-=N[i].w;
swap(N[i].l,N[i].r);
}
}
for(int i=;i<=n;i++)
printf("%I64d %I64d ",N[i].l,N[i].r);
return ;
}
C. Prime Number
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Simon has a prime number x and an array of non-negative integers a1, a2, ..., an.

Simon loves fractions very much. Today he wrote out number on a piece of paper. After Simon led all fractions to a common denominator and summed them up, he got a fraction: , where number t equals xa1 + a2 + ... + an. Now Simon wants to reduce the resulting fraction.

Help him, find the greatest common divisor of numbers s and t. As GCD can be rather large, print it as a remainder after dividing it by number 1000000007 (109 + 7).

Input

The first line contains two positive integers n and x (1 ≤ n ≤ 105, 2 ≤ x ≤ 109) — the size of the array and the prime number.

The second line contains n space-separated integers a1, a2, ..., an (0 ≤ a1 ≤ a2 ≤ ... ≤ an ≤ 109).

Output

Print a single number — the answer to the problem modulo 1000000007 (109 + 7).

Examples
Input
2 2
2 2
Output
8
Input
3 3
1 2 3
Output
27
Input
2 2
29 29
Output
73741817
Input
4 5
0 0 0 0
Output
1
Note

In the first sample . Thus, the answer to the problem is 8.

In the second sample, . The answer to the problem is 27, as 351 = 13·27, 729 = 27·27.

In the third sample the answer to the problem is 1073741824 mod 1000000007 = 73741817.

In the fourth sample . Thus, the answer to the problem is 1.

题意:  通分之后 求分子与分母的gcd  对1e9+7取模

题解:找到分子各项中最小的指数 并标记指数存在的次数 从低指数向上不断进位

注意所求指数应当小于等于分母的指数 之后用到快速幂。

 #include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <stack>
#include <queue>
#include <cmath>
#include <map>
#define ll __int64
#define mod 1000000007
#define dazhi 2147483647
using namespace std;
ll n,x;
ll a[];
ll b[];
map<ll,ll>mp;
ll sum;
ll gcd(ll a,ll b){return b==?a:gcd(b,a%b);}
ll quickmod(ll aa,ll bb)
{
ll re=;
while(bb)
{
if(bb&)
re=(re*aa)%mod;
aa=(aa*aa)%mod;
bb=bb>>;
}
return re%mod;
}
int main()
{
sum=;
int jishu=;
mp.clear();
scanf("%I64d %I64d",&n,&x);
for(ll i=;i<=n;i++)
{
scanf("%I64d",&a[i]);
sum+=a[i];
}
for(ll i=;i<=n;i++)
{
ll exm=sum-a[i];
if(mp[exm]==)
{
b[jishu++]=exm;
}
mp[exm]++;
}
sort(b,b+jishu);
ll ans=b[];
while()
{
if(mp[ans]%x==){
mp[ans+]+=(mp[ans]/x);
ans++;
}
else
break;
}
if(ans>sum)
ans=sum;
printf("%I64d\n",(quickmod(x,ans)%mod));
return ;
}

Codeforces Round #209 (Div. 2)A贪心 B思路 C思路+快速幂的更多相关文章

  1. Codeforces Round #369 (Div. 2) D. Directed Roads —— DFS找环 + 快速幂

    题目链接:http://codeforces.com/problemset/problem/711/D D. Directed Roads time limit per test 2 seconds ...

  2. Codeforces Round #307 (Div. 2) D. GukiZ and Binary Operations 矩阵快速幂优化dp

    D. GukiZ and Binary Operations time limit per test 1 second memory limit per test 256 megabytes inpu ...

  3. Codeforces Round #546 (Div. 2) D 贪心 + 思维

    https://codeforces.com/contest/1136/problem/D 贪心 + 思维 题意 你面前有一个队列,加上你有n个人(n<=3e5),有m(m<=个交换法则, ...

  4. Codeforces Round #547 (Div. 3) F 贪心 + 离散化

    https://codeforces.com/contest/1141/problem/F2 题意 一个大小为n的数组a[],问最多有多少个不相交的区间和相等 题解 离散化用值来做,贪心选择较前的区间 ...

  5. Codeforces Round #595 (Div. 3)D1D2 贪心 STL

    一道用STL的贪心,正好可以用来学习使用STL库 题目大意:给出n条可以内含,相交,分离的线段,如果重叠条数超过k次则为坏点,n,k<2e5 所以我们贪心的想我们从左往右遍历,如果重合部分条数超 ...

  6. Codeforces Round #554 (Div. 2) D 贪心 + 记忆化搜索

    https://codeforces.com/contest/1152/problem/D 题意 给你一个n代表合法括号序列的长度一半,一颗有所有合法括号序列构成的字典树上,选择最大的边集,边集的边没 ...

  7. Codeforces Round #303 (Div. 2) D 贪心

    D. Queue time limit per test 1 second memory limit per test 256 megabytes input standard input outpu ...

  8. Codeforces Round #545 (Div. 2) D 贪心 + kmp

    https://codeforces.com/contest/1138/problem/D 题意 两个01串s和t,s中字符能相互交换,问最多能得到多少个(可交叉)的t 题解 即将s中的01塞进t中, ...

  9. Codeforces Round #547 (Div. 3) G 贪心

    https://codeforces.com/contest/1141/problem/G 题意 在一棵有n个点的树上给边染色,连在同一个点上的边颜色不能相同,除非舍弃掉这个点,问最少需要多少种颜色来 ...

随机推荐

  1. mongo复杂操作

    相比关系型数据库, Array [1,2,3,4,5] 和 Object { 'name':'DragonFire' } 是MongoDB 比较特殊的类型了 特殊在哪里呢?在他们的操作上又有什么需要注 ...

  2. Javascript 初学笔记

    变量作用域 自 ES2015 起,JS 引入let 和 const 关键词定义变量的块作用域(Block Scope). var 仅支持全局作用域(Global Scope)和函数作用域(Functi ...

  3. spring JDBC 事务管理

    spring JDBC 事务管理 一.Spring 中的JDBC Spring中封装了JDBC的ORM框架,可以用它来操作数据,不需要再使用外部的OEM框架(MyBatis),一些小的项目用它. 步骤 ...

  4. JDBC及DBUtils

    1.JDBC2.DBUtils ###01JDBC概念和数据库驱动程序 * A: JDBC概念和数据库驱动程序 * a: JDBC概述 * JDBC(Java Data Base Connectivi ...

  5. 3.openldap生成LDAP用户

    1.用migrationtools生成用户 #yum install migrationtools -y #vim /usr/share/migrationtools/migrate_common.p ...

  6. Python 装饰器Decorator(二)

    对于上一篇“”Python闭包“”随笔中提到的make_averager()函数的如下实现,我们把历史值保存在列表里,每次计算平均值都需要重新求和,当历史值较多时,需要占用比较多的空间并且效率也不高. ...

  7. java 不同数据类型的相互转化

    在工作中经常会遇到需要将数据类型转化的情况,今天抽出时间总结一下. date——string Date date = new Date(); DateFormat dateformat = new S ...

  8. 使用Node.js 搭建http服务器 http-server 模块

    1. 安装 http-server 模块 npm install http-server -g   全局安装 2.在需要的文件夹   启动 http-server  默认的端口是8080    可以使 ...

  9. iPhone上的CPU架构,核数以及运行内存

    机型 CPU架构 CPU名 CPU位数 CPU核数 运行内存 iPhone 5 ARMv7s A6 32bit 双核 1G iPhone 5c ARMV7s A6 32bit 双核 1G iPhone ...

  10. Navicat for mysql导入.sql数据库大小受限制

    把导入单个表的最大限制调一下就行(在my.ini里面就算改了max_allowed_packet也不一定行,因为Navicat貌似并不调用,实际他有自己的一套默认配置,所以需要在Navicat上调整) ...