使用ElasticSearch完成百万级数据查询附近的人功能
上一篇文章介绍了ElasticSearch使用Repository和ElasticSearchTemplate完成构建复杂查询条件,简单介绍了ElasticSearch使用地理位置的功能。
这一篇我们来看一下使用ElasticSearch完成大数据量查询附近的人功能,搜索N米范围的内的数据。
准备环境
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.tianyalei</groupId> <artifactId>elasticsearch</artifactId> <version>0.0.1-SNAPSHOT</version> <packaging>jar</packaging> <name>elasticsearch</name> <description>Demo project for Spring Boot</description> <parent> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-parent</artifactId> <version>1.5.4.RELEASE</version> <relativePath/> <!-- lookup parent from repository --> </parent> <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding> <java.version>1.8</java.version> </properties> <dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-elasticsearch</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-test</artifactId> <scope>test</scope> </dependency> <dependency> <groupId>com.sun.jna</groupId> <artifactId>jna</artifactId> <version>3.0.9</version> </dependency> </dependencies> <build> <plugins> <plugin> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-maven-plugin</artifactId> </plugin> </plugins> </build> </project>
新建model类Person
package com.tianyalei.elasticsearch.model;
import org.springframework.data.annotation.Id;
import org.springframework.data.elasticsearch.annotations.Document;
import org.springframework.data.elasticsearch.annotations.GeoPointField;
import java.io.Serializable;
/**
* model类
*/
@Document(indexName="elastic_search_project",type="person",indexStoreType="fs",shards=5,replicas=1,refreshInterval="-1")
public class Person implements Serializable {
@Id
private int id;
private String name;
private String phone;
/**
* 地理位置经纬度
* lat纬度,lon经度 "40.715,-74.011"
* 如果用数组则相反[-73.983, 40.719]
*/
@GeoPointField
private String address;
public int getId() {
return id;
}
public void setId(int id) {
this.id = id;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public String getPhone() {
return phone;
}
public void setPhone(String phone) {
this.phone = phone;
}
public String getAddress() {
return address;
}
public void setAddress(String address) {
this.address = address;
}
}
我用address字段表示经纬度位置。注意,使用String[]和String分别来表示经纬度时是不同的,见注释。
import com.tianyalei.elasticsearch.model.Person;
import org.springframework.data.elasticsearch.repository.ElasticsearchRepository;
public interface PersonRepository extends ElasticsearchRepository<Person, Integer> {
}
看一下Service类,完成插入测试数据的功能,查询的功能我放在Controller里了,为了方便查看,正常是应该放在Service里
package com.tianyalei.elasticsearch.service;
import com.tianyalei.elasticsearch.model.Person;
import com.tianyalei.elasticsearch.repository.PersonRepository;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.elasticsearch.core.ElasticsearchTemplate;
import org.springframework.data.elasticsearch.core.query.IndexQuery;
import org.springframework.stereotype.Service;
import java.util.ArrayList;
import java.util.List;
@Service
public class PersonService {
@Autowired
PersonRepository personRepository;
@Autowired
ElasticsearchTemplate elasticsearchTemplate;
private static final String PERSON_INDEX_NAME = "elastic_search_project";
private static final String PERSON_INDEX_TYPE = "person";
public Person add(Person person) {
return personRepository.save(person);
}
public void bulkIndex(List<Person> personList) {
int counter = 0;
try {
if (!elasticsearchTemplate.indexExists(PERSON_INDEX_NAME)) {
elasticsearchTemplate.createIndex(PERSON_INDEX_TYPE);
}
List<IndexQuery> queries = new ArrayList<>();
for (Person person : personList) {
IndexQuery indexQuery = new IndexQuery();
indexQuery.setId(person.getId() + "");
indexQuery.setObject(person);
indexQuery.setIndexName(PERSON_INDEX_NAME);
indexQuery.setType(PERSON_INDEX_TYPE);
//上面的那几步也可以使用IndexQueryBuilder来构建
//IndexQuery index = new IndexQueryBuilder().withId(person.getId() + "").withObject(person).build();
queries.add(indexQuery);
if (counter % 500 == 0) {
elasticsearchTemplate.bulkIndex(queries);
queries.clear();
System.out.println("bulkIndex counter : " + counter);
}
counter++;
}
if (queries.size() > 0) {
elasticsearchTemplate.bulkIndex(queries);
}
System.out.println("bulkIndex completed.");
} catch (Exception e) {
System.out.println("IndexerService.bulkIndex e;" + e.getMessage());
throw e;
}
}
}
注意看bulkIndex方法,这个是批量插入数据用的,bulk也是ES官方推荐使用的批量插入数据的方法。这里是每逢500的整数倍就bulk插入一次。
package com.tianyalei.elasticsearch.controller;
import com.tianyalei.elasticsearch.model.Person;
import com.tianyalei.elasticsearch.service.PersonService;
import org.elasticsearch.common.unit.DistanceUnit;
import org.elasticsearch.index.query.GeoDistanceQueryBuilder;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.search.sort.GeoDistanceSortBuilder;
import org.elasticsearch.search.sort.SortBuilders;
import org.elasticsearch.search.sort.SortOrder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.domain.PageRequest;
import org.springframework.data.domain.Pageable;
import org.springframework.data.elasticsearch.core.ElasticsearchTemplate;
import org.springframework.data.elasticsearch.core.query.NativeSearchQueryBuilder;
import org.springframework.data.elasticsearch.core.query.SearchQuery;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;
import java.text.DecimalFormat;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
@RestController
public class PersonController {
@Autowired
PersonService personService;
@Autowired
ElasticsearchTemplate elasticsearchTemplate;
@GetMapping("/add")
public Object add() {
double lat = 39.929986;
double lon = 116.395645;
List<Person> personList = new ArrayList<>(900000);
for (int i = 100000; i < 1000000; i++) {
double max = 0.00001;
double min = 0.000001;
Random random = new Random();
double s = random.nextDouble() % (max - min + 1) + max;
DecimalFormat df = new DecimalFormat("######0.000000");
// System.out.println(s);
String lons = df.format(s + lon);
String lats = df.format(s + lat);
Double dlon = Double.valueOf(lons);
Double dlat = Double.valueOf(lats);
Person person = new Person();
person.setId(i);
person.setName("名字" + i);
person.setPhone("电话" + i);
person.setAddress(dlat + "," + dlon);
personList.add(person);
}
personService.bulkIndex(personList);
// SearchQuery searchQuery = new NativeSearchQueryBuilder().withQuery(QueryBuilders.queryStringQuery("spring boot OR 书籍")).build();
// List<Article> articles = elas、ticsearchTemplate.queryForList(se、archQuery, Article.class);
// for (Article article : articles) {
// System.out.println(article.toString());
// }
return "添加数据";
}
/**
*
geo_distance: 查找距离某个中心点距离在一定范围内的位置
geo_bounding_box: 查找某个长方形区域内的位置
geo_distance_range: 查找距离某个中心的距离在min和max之间的位置
geo_polygon: 查找位于多边形内的地点。
sort可以用来排序
*/
@GetMapping("/query")
public Object query() {
double lat = 39.929986;
double lon = 116.395645;
Long nowTime = System.currentTimeMillis();
//查询某经纬度100米范围内
GeoDistanceQueryBuilder builder = QueryBuilders.geoDistanceQuery("address").point(lat, lon)
.distance(100, DistanceUnit.METERS);
GeoDistanceSortBuilder sortBuilder = SortBuilders.geoDistanceSort("address")
.point(lat, lon)
.unit(DistanceUnit.METERS)
.order(SortOrder.ASC);
Pageable pageable = new PageRequest(0, 50);
NativeSearchQueryBuilder builder1 = new NativeSearchQueryBuilder().withFilter(builder).withSort(sortBuilder).withPageable(pageable);
SearchQuery searchQuery = builder1.build();
//queryForList默认是分页,走的是queryForPage,默认10个
List<Person> personList = elasticsearchTemplate.queryForList(searchQuery, Person.class);
System.out.println("耗时:" + (System.currentTimeMillis() - nowTime));
return personList;
}
}
看Controller类,在add方法中,我们插入90万条测试数据,随机产生不同的经纬度地址。
参考:ES根据地理位置查询 http://blog.csdn.net/bingduanlbd/article/details/52253542
使用ElasticSearch完成百万级数据查询附近的人功能的更多相关文章
- 百万级数据查询到datatable中,提示内存溢出
参考资料: http://group.cnblogs.com/topic/32230.html
- EF查询百万级数据的性能测试--多表连接复杂查询
相关文章:EF查询百万级数据的性能测试--单表查询 一.起因 上次做的是EF百万级数据的单表查询,总结了一下,在200w以下的数据量的情况(Sql Server 2012),EF是可以使用,但是由于 ...
- Mongo查询百万级数据性能问题及JAVA优化问题
Mongo查询百万级数据 使用分页 skip和limit 效率会相当慢 那么怎么解决呢 上代码 全部查询数据也会特别慢 Criteria criteria = new Criteria(); ...
- Sql Server分页分段查询百万级数据四种项目实例
实际项目中需要实现自定义分页,最关键第一步就是写分页SQL语句,要求语句效率要高. 那么本文的一个查询示例是查询第100000-100050条记录,即每页50条的结果集.查询的表名为infoTab,且 ...
- 构建ASP.NET MVC4+EF5+EasyUI+Unity2.x注入的后台管理系统(37)-文章发布系统④-百万级数据和千万级数据简单测试
原文:构建ASP.NET MVC4+EF5+EasyUI+Unity2.x注入的后台管理系统(37)-文章发布系统④-百万级数据和千万级数据简单测试 系列目录 我想测试EF在一百万条数据下的显示时间! ...
- poi实现百万级数据导出
注意使用 SXSSFWorkbook 此类在构造表格和处理行高的时候效率极高,刚开始时我使用的 XSSFWorkbook 就出现构造表格效率极低,一万行基本需要3秒左右,那当导出百万级数据就慢的要死啦 ...
- Sql Server中百万级数据的查询优化
原文:Sql Server中百万级数据的查询优化 万级别的数据真的算不上什么大数据,但是这个档的数据确实考核了普通的查询语句的性能,不同的书写方法有着千差万别的性能,都在这个级别中显现出来了,它不仅考 ...
- 实战手记:让百万级数据瞬间导入SQL Server
想必每个DBA都喜欢挑战数据导入时间,用时越短工作效率越高,也充分的能够证明自己的实力.实际工作中有时候需要把大量数据导入数据库,然后用于各种程序计算,本文将向大家推荐一个挑战4秒极限让百万级数据瞬间 ...
- 【转 】实战手记:让百万级数据瞬间导入SQL Server
想必每个DBA都喜欢挑战数据导入时间,用时越短工作效率越高,也充分的能够证明自己的实力.实际工作中有时候需要把大量数据导入数据库,然后用于各种程序计算,本文将向大家推荐一个挑战4秒极限让百万级数据瞬间 ...
随机推荐
- 先记录一下吧 开始的程序 hello!java!
起床后就跟着老师的教学,也稍微学了一些,刚开始用java. 一堆大小写字母注意不过来,很尴尬. 虽然只是成功了一个"hello java "的简单的不能再简单的小程序,不过还是有点 ...
- left4dead2 常用配置
难度控制 z_difficulty [Easy, Normal, Hard, Impossible]
- Java基础东西(按位操作运算)
http://aokunsang.iteye.com/blog/615658 前奏: 昨天一哥们问我Java位移你会吗,我说不会,想想位移这么麻烦,一般有位移的Java代码一律不看,有几个人会啊, ...
- uboot下ext4load的用法
将sd卡的某个分区下的某个目录里的某个文件加载到内存的某个地址,示例如下: ext4load mmc 0:1 0xa0000000 /bin/vi
- 微信JS-SDK接口,分享到朋友圈”按钮点击状态及自定义分享内容接口
jssdk.php 接口文件class JSSDK { private $appId; private $appSecret; public function __construct($appId, ...
- mysql中group by存在局限性探讨(待续)
现在有一个需求:在2018年游戏充值记录表(字段主要有: user_name , money , game_id , 表有6000w行)查找出哪些人在某段日期内累计充值金额在100~500元范围内的, ...
- Bellman-Ford FORMCM
Bellman-Ford date: 2018/2/2 author:pprp theme:Dijstra 简介 单源最短路问题 要求: 图中不能出现负圈 思路: Bellman-Ford算法就是遍历 ...
- org.springframework.dao.DuplicateKeyException: a different object with the same identifier value was
在使用hibernate框架里面的:saveOrUpdate报错: 意思就是另一个对象的id(id同值)已经被session关联了. 原因分析: 在第1步中中通过titleList.get(0)获取一 ...
- linux一键安装php脚本
#!/bin/sh echo "----------------------------------start install php --------------------------- ...
- NoSQL&&Redis介绍
再说Redis之前,想先说一下NoSQL.在最早的单机时代,随着数据的增加一台机器可能放不下了.同时索引占用的内存空间也会越来越大.对请求的读写操作影响很大.于是就在数据库之前增加了一层保护层 — 缓 ...