HDU5977 Garden of Eden(树的点分治)
题目
Source
http://acm.hdu.edu.cn/showproblem.php?pid=5977
Description
When God made the first man, he put him on a beautiful garden, the Garden of Eden. Here Adam lived with all animals. God gave Adam eternal life. But Adam was lonely in the garden, so God made Eve. When Adam was asleep one night, God took a rib from him and made Eve beside him. God said to them, “here in the Garden, you can do everything, but you cannot eat apples from the tree of knowledge.”
One day, Satan came to the garden. He changed into a snake and went to live in the tree of knowledge. When Eve came near the tree someday, the snake called her. He gave her an apple and persuaded her to eat it. Eve took a bite, and then she took the apple to Adam. And Adam ate it, too. Finally, they were driven out by God and began a hard journey of life.
The above is the story we are familiar with. But we imagine that Satan love knowledge more than doing bad things. In Garden of Eden, the tree of knowledge has n apples, and there are k varieties of apples on the tree. Satan wants to eat all kinds of apple to gets all kinds of knowledge.So he chooses a starting point in the tree,and starts walking along the edges of tree,and finally stops at a point in the tree(starting point and end point may be same).The same point can only be passed once.He wants to know how many different kinds of schemes he can choose to eat all kinds of apple. Two schemes are different when their starting points are different or ending points are different.
Input
There are several cases.Process till end of input.
For each case, the first line contains two integers n and k, denoting the number of apples on the tree and number of kinds of apple on the tree respectively.
The second line contains n integers meaning the type of the i-th apple. Types are represented by integers between 1 and k .
Each of the following n-1 lines contains two integers u and v,meaning there is one edge between u and v.1≤n≤50000, 1≤k≤10
Output
For each case output your answer on a single line.
Sample Input
3 2
1 2 2
1 2
1 3
Sample Output
6
分析
题目大概说一棵树,各个结点都有一个数字(<=k),然后问有几条路径使得路径上所有结点包含了1到k的所有数字。
路径,自然想到树分治解决,因为任何一条路径都在以某个点为根的子树中且过那条根的链。
- 考虑cnt[S]记录已经统计获得的数字集合为S的路径数量。。
- 不过这样会发现,新的路径信息与其合并更新答案时,还要枚举它的补集以及补集的超集,这时间复杂度不太好。。
- 所以直接cnt[S]表示已经统计获得的数字集合为S以及S的超集的路径数量。。
- 现在问题是新的路径信息如何合并到cnt[S]中,其实只要枚举所有新的路径信息再枚举所有集合状态就OK了,时间复杂度由主定理可知是$O(nlogn2^k)$。。简单粗暴就过了。。
另外。。注意路径的起点和终点是可以一样的。。
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define MAXN 50010 struct Edge{
int v,next;
}edge[MAXN<<1];
int NE,head[MAXN];
void addEdge(int u,int v){
edge[NE].v=v; edge[NE].next=head[u];
head[u]=NE++;
} bool vis[MAXN];
int size[MAXN];
void getsize(int u,int fa){
size[u]=1;
for(int i=head[u]; i!=-1; i=edge[i].next){
int v=edge[i].v;
if(vis[v] || v==fa) continue;
getsize(v,u);
size[u]+=size[v];
}
}
int mini,cen;
void getcen(int u,int fa,int &tot){
int res=tot-size[u];
for(int i=head[u]; i!=-1; i=edge[i].next){
int v=edge[i].v;
if(vis[v] || v==fa) continue;
res=max(res,size[v]);
getcen(v,u,tot);
}
if(res<mini){
mini=res;
cen=u;
}
}
int getcen(int u){
getsize(u,u);
mini=INF;
getcen(u,u,size[u]);
return cen;
} long long cnt[1024];
int rec[MAXN],rn; int type,val[MAXN]; long long ans; void conqur_dfs(int u,int fa,int s){
ans+=cnt[(~s)&((1<<type)-1)];
rec[rn++]=s;
for(int i=head[u]; i!=-1; i=edge[i].next){
int v=edge[i].v;
if(fa==v || vis[v]) continue;
conqur_dfs(v,u,s|(1<<val[v]));
}
}
void conqur(int u){
memset(cnt,0,sizeof(cnt));
cnt[0]=1;
for(int i=head[u]; i!=-1; i=edge[i].next){
int v=edge[i].v;
if(vis[v]) continue;
rn=0;
conqur_dfs(v,v,(1<<val[u])|(1<<val[v]));
for(int j=0; j<rn; ++j){
for(int k=0; k<(1<<type); ++k){
if((rec[j]|k)==rec[j]) ++cnt[k];
}
}
}
}
void divide(int u){
u=getcen(u);
vis[u]=1;
conqur(u);
for(int i=head[u]; i!=-1; i=edge[i].next){
int v=edge[i].v;
if(vis[v]) continue;
divide(v);
}
} int main(){
int n;
while(~scanf("%d%d",&n,&type)){
for(int i=1; i<=n; ++i){
scanf("%d",val+i);
--val[i];
}
NE=0;
memset(head,-1,sizeof(head));
int a,b;
for(int i=1; i<n; ++i){
scanf("%d%d",&a,&b);
addEdge(a,b);
addEdge(b,a);
}
memset(vis,0,sizeof(vis));
ans=0;
divide(1);
ans*=2;
if(type==1) ans+=n;
printf("%lld\n",ans);
}
return 0;
}
HDU5977 Garden of Eden(树的点分治)的更多相关文章
- hdu-5977 Garden of Eden(树分治)
题目链接: Garden of Eden Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/ ...
- HDU-5977 - Garden of Eden 点分治
HDU - 5977 题意: 给定一颗树,问树上有多少节点对,节点对间包括了所有K种苹果. 思路: 点分治,对于每个节点记录从根节点到这个节点包含的所有情况,类似状压,因为K<=10.然后处理每 ...
- HDU 5977 Garden of Eden (树分治+状态压缩)
题意:给一棵节点数为n,节点种类为k的无根树,问其中有多少种不同的简单路径,可以满足路径上经过所有k种类型的点? 析:对于路径,就是两类,第一种情况,就是跨过根结点,第二种是不跨过根结点,分别讨论就好 ...
- HDU5977 Garden of Eden 【FMT】【树形DP】
题目大意:求有所有颜色的路径数. 题目分析:参考codeforces997C,先利用基的FMT的性质在$O(2^k)$做FMT,再利用只还原一位的特点在$O(2^k)$还原,不知道为什么网上都要点分治 ...
- hdu5977 Garden of Eden
都不好意思写题解了 跑了4000多ms 纪念下自己A的第二题 (我还有一道freetour II wa20多发没A...呜呜呜 #include<bits/stdc++.h> using ...
- HDU 5977 Garden of Eden(点分治求点对路径颜色数为K)
Problem Description When God made the first man, he put him on a beautiful garden, the Garden of Ede ...
- Garden of Eden
Garden of Eden Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others ...
- uva10001 Garden of Eden
Cellular automata are mathematical idealizations of physical systems in which both space and time ar ...
- HDU4812 D Tree(树的点分治)
题目大概说给一棵有点权的树,输出字典序最小的点对,使这两点间路径上点权的乘积模1000003的结果为k. 树的点分治搞了.因为是点权过根的两条路径的LCA会被重复统计,而注意到1000003是质数,所 ...
随机推荐
- PHP 正则表达式 基本规则
正则表达式基本知识: \ 将下一个字符标记为一个特殊字符.或一个原义字符.或一个 向后引用.或一个八进制转义符. 例如,'n' 匹配字符 "n".'\n' 匹配一个换行符.序列 ' ...
- HDU5934 强连通分量
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5934 根据距离关系建边 对于强连通分量来说,只需引爆话费最小的炸弹即可引爆整个强连通分量 将所有的强连通分 ...
- 【新手出发】从搭虚拟机开始,一步一步在CentOS上跑起来.Net Core程序
文章背景 微软6月26号发布core 1.0版本后,园子里关于这方面的文章就更加火爆了,不管是从文章数量还是大家互动的热情来看,绝对是最热门的技术NO.1.我从去年底开始接触.net core到现在也 ...
- Sublime Text 3编译Sass - Sublime Text安装Sass插件
1.首先要安装sass,安装流程: http://www.w3cplus.com/sassguide/install.html 2.sublime text安装Package Control(已经安装 ...
- Java Bean、POJO、 Entity、 VO 、PO、DAO
Java Bean.POJO. Entity. VO , 其实都是java 对象,只不过用于不同场合罢了. Java Bean: 就是一个普通的Java 对象, 只不过是加了一些约束条件. 声 ...
- mysql使用load导入csv文件所遇到的问题及解决方法
使用navicat的客户端插入csv的数据文件,有一种非常简单的方式,即使用导入向导,直接根据数据匹配即可. 使用load的方式. 由于本项目中插入数据表量大而且格式统一,故首先使用创建字段creat ...
- BZOJ 1095: [ZJOI2007]Hide 捉迷藏
Description 一棵树,支持两个操作,修改一个点的颜色,问树上最远的两个白点距离. Sol 动态点分治. 动态点分治就是将每个重心连接起来,形成一个跟线段树类似的结构,当然它不是二叉的... ...
- css_随笔
1 css 基础语法: 2 派生选择器 li strong { font-style: italic; font-weight: normal; } <p><strong>我是 ...
- centos 7 配置网络
文档: https://wiki.centos.org/FAQ/CentOS7
- python ConfigParser 模块
ConfigParser的函数方法 读取配置文件 read(filename) 直接读取ini文件内容 sections() 得到所有的section,并以列表的形式返回 options(sectio ...