[CF632E]Thief in a Shop
题目大意:有一个小偷,拿$k$个东西,有$n$种产品,每种产品都有无限多个。对于每个第$i$ 种产品,它的价值是$A_i$。可能偷走的物品价值之和。
题解:对于所有的物品构造生成函数$F(x)=\sum\limits_{i\in A}x^i$,取$k$个物品相当于取其中的$k$项相乘,输出$F^k(x)$中不为零的项就行了。(这道题模数$998244353$和$1004535809$都被$hack$了,看$Weng\_weijie\;dalao$的题解得双模数没被卡,于是就$A$了)(这道题似乎可以用$DP$,但我不怎么会)
卡点:无
C++ Code:
#include <cstdio>
#include <algorithm>
#define maxn 1 << 20 | 3
const int G = 3;
int mod, ans;
int lim, ilim, s, rev[maxn], Wn[maxn];
inline int pw(int base, long long p) {
base %= mod, p %= mod - 1;
int ans = 1;
for (; p; p >>= 1, base = 1ll * base * base % mod) if (p & 1) ans = 1ll * ans * base % mod;
return ans;
}
inline int Inv(int x) {
return pw(x, mod - 2);
}
inline void up(int &a, int b) {if ((a += b) >= mod) a -= mod;}
inline void NTT(int *A, int op) {
for (int i = 0; i < lim; i++) if (i < rev[i]) std::swap(A[i], A[rev[i]]);
for (int mid = 1; mid < lim; mid <<= 1) {
int t = lim / mid >> 1;
for (int i = 0; i < lim; i += mid << 1) {
for (int j = 0; j < mid; j++) {
int W = op ? Wn[t * j] : Wn[lim - t * j];
int X = A[i + j], Y = 1ll * A[i + j + mid] * W % mod;
up(A[i + j], Y), up(A[i + j + mid] = X, mod - Y);
}
}
}
if (!op) for (int i = 0; i < lim; i++) A[i] = 1ll * A[i] * ilim % mod;
}
inline void init(int n, int mod) {
::mod = mod;
lim = 1, s = -1; while (lim < n) lim <<= 1, s++; ilim = Inv(lim);
for (int i = 0; i < lim; i++) rev[i] = rev[i >> 1] >> 1 | (i & 1) << s;
int W = pw(G, (mod - 1) / lim);
Wn[0] = 1; for (int i = 1; i <= lim; i++) Wn[i] = 1ll * Wn[i - 1] * W % mod;
}
int n, k;
int a[maxn], b[maxn];
int main() {
scanf("%d%d", &n, &k);
for (int i = 0, tmp; i < n; i++) scanf("%d", &tmp), a[tmp] = b[tmp] = 1;
init(1 << 20, 998244353);
NTT(a, 1);
for (int i = 0; i < lim; i++) a[i] = pw(a[i], k);
NTT(a, 0);
init(1 << 20, 1004535809);
NTT(b, 1);
for (int i = 0; i < lim; i++) b[i] = pw(b[i], k);
NTT(b, 0);
for (int i = 0; i < lim; i++) if (a[i] | b[i]) printf("%d ", i);
return 0;
}
[CF632E]Thief in a Shop的更多相关文章
- CF632E Thief in a Shop 和 CF958F3 Lightsabers (hard)
Thief in a Shop n个物品每个价值ai,要求选k个,可以重复.问能取到哪几个价值? 1 ≤ n, k ≤ 1000,1 ≤ ai ≤ 1000 题解 将选一个物品能取到的价值的01生成函 ...
- codeforces 632+ E. Thief in a Shop
E. Thief in a Shop time limit per test 5 seconds memory limit per test 512 megabytes input standard ...
- codeforces 632E. Thief in a Shop fft
题目链接 E. Thief in a Shop time limit per test 5 seconds memory limit per test 512 megabytes input stan ...
- C - Thief in a Shop - dp完全背包-FFT生成函数
C - Thief in a Shop 思路 :严格的控制好k的这个数量,这就是个裸完全背包问题.(复杂度最极端会到1e9) 他们随意原来随意组合的方案,与他们都减去 最小的 一个 a[ i ] 组合 ...
- codeforces Educational Codeforces Round 9 E - Thief in a Shop
E - Thief in a Shop 题目大意:给你n ( n <= 1000)个物品每个物品的价值为ai (ai <= 1000),你只能恰好取k个物品,问你能组成哪些价值. 思路:我 ...
- Educational Codeforces Round 9 E. Thief in a Shop dp fft
E. Thief in a Shop 题目连接: http://www.codeforces.com/contest/632/problem/E Description A thief made hi ...
- Educational Codeforces Round 9 E. Thief in a Shop NTT
E. Thief in a Shop A thief made his way to a shop. As usual he has his lucky knapsack with him. Th ...
- CF632E: Thief in a Shop(快速幂+NTT)(存疑)
A thief made his way to a shop. As usual he has his lucky knapsack with him. The knapsack can contai ...
- Codeforces632E Thief in a Shop(NTT + 快速幂)
题目 Source http://codeforces.com/contest/632/problem/E Description A thief made his way to a shop. As ...
随机推荐
- 在xampp修改密码
1.选择 服务器--账号--修改密码 2.在密码 一栏输入新密码 3.刷新页面会得到如下页面 此时,该页面提醒我们检查配置文件中的主机.用户名和密码 4.打开配置文件 路径为 xampp -> ...
- jquery操作元素的位置
.offset() 在匹配的元素中,获取第一个元素的当前坐标,或设置每一个元素的坐标,坐标相对于文档. .offset() 这个不接受任何参数. var offset = p.offset(); // ...
- 【转载】最长回文字符串(manacher算法)
原文转载自:http://blog.csdn.net/lsjseu/article/details/9990539 偶然看见了人家的博客发现这么一个问题,研究了一下午, 才发现其中的奥妙.Stupid ...
- 【转载】java 客户端链接不上redis解决方案 (jedis)
本文出自:http://blog.csdn.net/lulidaitian/article/details/51946169 出现问题描述: 1.Could not get a resource fr ...
- 学习python第十四天,模块
Python 模块(Module),是一个 Python 文件,以 .py 结尾,包含了 Python 对象定义和Python语句. 模块让你能够有逻辑地组织你的 Python 代码段. 把相关的代码 ...
- linux处理僵尸进程
由来 在linux下,如果一个进程终止,内核会释放该进程使用的所有存储区,关闭所有文件句柄等,但是,内核会为每个终止子进程保留一定量的信息.这些信息至少包括进程ID,进程的终止状态,以及该进程使用的C ...
- Android 拍照或相册选择照片进行显示缩放位图 Demo
拍照后直接使用 BitmapFactory.decodeStream(...) 进行创建 Bitmap 并显示是有问题的. Bitmap 是个简单对象,它只存储实际像素数据,也就是说,即使原始照片已压 ...
- 理解线程3 c语言示例线程基本操作
Table of Contents 1. 基本线程的动作 1.1. 设置线程属性 1.1.1. 设置脱离状态 1.1.2. 设置调度属性 1.2. 取消线程 1.3. 主线程创建多个线程示例 2. 了 ...
- 8,实例化Flask的参数 及 对app的配置
Flask 是一个非常灵活且短小精干的web框架 , 那么灵活性从什么地方体现呢? 有一个神奇的东西叫 Flask配置 , 这个东西怎么用呢? 它能给我们带来怎么样的方便呢? 首先展示一下: from ...
- Spring---配置文件概述
概述 Spring 的配置文件是用于指导 Spring 工厂进行Bean的生产.依赖关系注入及 Bean 实例分发的“图纸”,它是一个或多个标准的XML文档,J2EE 程序员必须学会并灵活应用这份“图 ...