题目大意:有一个小偷,拿$k$个东西,有$n$种产品,每种产品都有无限多个。对于每个第$i$ 种产品,它的价值是$A_i$。可能偷走的物品价值之和。

题解:对于所有的物品构造生成函数$F(x)=\sum\limits_{i\in A}x^i$,取$k$个物品相当于取其中的$k$项相乘,输出$F^k(x)$中不为零的项就行了。(这道题模数$998244353$和$1004535809$都被$hack$了,看$Weng\_weijie\;dalao$的题解得双模数没被卡,于是就$A$了)(这道题似乎可以用$DP$,但我不怎么会)

卡点:

C++ Code:

#include <cstdio>
#include <algorithm>
#define maxn 1 << 20 | 3
const int G = 3;
int mod, ans;
int lim, ilim, s, rev[maxn], Wn[maxn];
inline int pw(int base, long long p) {
base %= mod, p %= mod - 1;
int ans = 1;
for (; p; p >>= 1, base = 1ll * base * base % mod) if (p & 1) ans = 1ll * ans * base % mod;
return ans;
}
inline int Inv(int x) {
return pw(x, mod - 2);
}
inline void up(int &a, int b) {if ((a += b) >= mod) a -= mod;}
inline void NTT(int *A, int op) {
for (int i = 0; i < lim; i++) if (i < rev[i]) std::swap(A[i], A[rev[i]]);
for (int mid = 1; mid < lim; mid <<= 1) {
int t = lim / mid >> 1;
for (int i = 0; i < lim; i += mid << 1) {
for (int j = 0; j < mid; j++) {
int W = op ? Wn[t * j] : Wn[lim - t * j];
int X = A[i + j], Y = 1ll * A[i + j + mid] * W % mod;
up(A[i + j], Y), up(A[i + j + mid] = X, mod - Y);
}
}
}
if (!op) for (int i = 0; i < lim; i++) A[i] = 1ll * A[i] * ilim % mod;
}
inline void init(int n, int mod) {
::mod = mod;
lim = 1, s = -1; while (lim < n) lim <<= 1, s++; ilim = Inv(lim);
for (int i = 0; i < lim; i++) rev[i] = rev[i >> 1] >> 1 | (i & 1) << s;
int W = pw(G, (mod - 1) / lim);
Wn[0] = 1; for (int i = 1; i <= lim; i++) Wn[i] = 1ll * Wn[i - 1] * W % mod;
}
int n, k;
int a[maxn], b[maxn];
int main() {
scanf("%d%d", &n, &k);
for (int i = 0, tmp; i < n; i++) scanf("%d", &tmp), a[tmp] = b[tmp] = 1;
init(1 << 20, 998244353);
NTT(a, 1);
for (int i = 0; i < lim; i++) a[i] = pw(a[i], k);
NTT(a, 0);
init(1 << 20, 1004535809);
NTT(b, 1);
for (int i = 0; i < lim; i++) b[i] = pw(b[i], k);
NTT(b, 0);
for (int i = 0; i < lim; i++) if (a[i] | b[i]) printf("%d ", i);
return 0;
}

  

[CF632E]Thief in a Shop的更多相关文章

  1. CF632E Thief in a Shop 和 CF958F3 Lightsabers (hard)

    Thief in a Shop n个物品每个价值ai,要求选k个,可以重复.问能取到哪几个价值? 1 ≤ n, k ≤ 1000,1 ≤ ai ≤ 1000 题解 将选一个物品能取到的价值的01生成函 ...

  2. codeforces 632+ E. Thief in a Shop

    E. Thief in a Shop time limit per test 5 seconds memory limit per test 512 megabytes input standard ...

  3. codeforces 632E. Thief in a Shop fft

    题目链接 E. Thief in a Shop time limit per test 5 seconds memory limit per test 512 megabytes input stan ...

  4. C - Thief in a Shop - dp完全背包-FFT生成函数

    C - Thief in a Shop 思路 :严格的控制好k的这个数量,这就是个裸完全背包问题.(复杂度最极端会到1e9) 他们随意原来随意组合的方案,与他们都减去 最小的 一个 a[ i ] 组合 ...

  5. codeforces Educational Codeforces Round 9 E - Thief in a Shop

    E - Thief in a Shop 题目大意:给你n ( n <= 1000)个物品每个物品的价值为ai (ai <= 1000),你只能恰好取k个物品,问你能组成哪些价值. 思路:我 ...

  6. Educational Codeforces Round 9 E. Thief in a Shop dp fft

    E. Thief in a Shop 题目连接: http://www.codeforces.com/contest/632/problem/E Description A thief made hi ...

  7. Educational Codeforces Round 9 E. Thief in a Shop NTT

    E. Thief in a Shop   A thief made his way to a shop. As usual he has his lucky knapsack with him. Th ...

  8. CF632E: Thief in a Shop(快速幂+NTT)(存疑)

    A thief made his way to a shop. As usual he has his lucky knapsack with him. The knapsack can contai ...

  9. Codeforces632E Thief in a Shop(NTT + 快速幂)

    题目 Source http://codeforces.com/contest/632/problem/E Description A thief made his way to a shop. As ...

随机推荐

  1. 在xampp修改密码

    1.选择 服务器--账号--修改密码 2.在密码 一栏输入新密码 3.刷新页面会得到如下页面 此时,该页面提醒我们检查配置文件中的主机.用户名和密码 4.打开配置文件 路径为 xampp -> ...

  2. jquery操作元素的位置

    .offset() 在匹配的元素中,获取第一个元素的当前坐标,或设置每一个元素的坐标,坐标相对于文档. .offset() 这个不接受任何参数. var offset = p.offset(); // ...

  3. 【转载】最长回文字符串(manacher算法)

    原文转载自:http://blog.csdn.net/lsjseu/article/details/9990539 偶然看见了人家的博客发现这么一个问题,研究了一下午, 才发现其中的奥妙.Stupid ...

  4. 【转载】java 客户端链接不上redis解决方案 (jedis)

    本文出自:http://blog.csdn.net/lulidaitian/article/details/51946169 出现问题描述: 1.Could not get a resource fr ...

  5. 学习python第十四天,模块

    Python 模块(Module),是一个 Python 文件,以 .py 结尾,包含了 Python 对象定义和Python语句. 模块让你能够有逻辑地组织你的 Python 代码段. 把相关的代码 ...

  6. linux处理僵尸进程

    由来 在linux下,如果一个进程终止,内核会释放该进程使用的所有存储区,关闭所有文件句柄等,但是,内核会为每个终止子进程保留一定量的信息.这些信息至少包括进程ID,进程的终止状态,以及该进程使用的C ...

  7. Android 拍照或相册选择照片进行显示缩放位图 Demo

    拍照后直接使用 BitmapFactory.decodeStream(...) 进行创建 Bitmap 并显示是有问题的. Bitmap 是个简单对象,它只存储实际像素数据,也就是说,即使原始照片已压 ...

  8. 理解线程3 c语言示例线程基本操作

    Table of Contents 1. 基本线程的动作 1.1. 设置线程属性 1.1.1. 设置脱离状态 1.1.2. 设置调度属性 1.2. 取消线程 1.3. 主线程创建多个线程示例 2. 了 ...

  9. 8,实例化Flask的参数 及 对app的配置

    Flask 是一个非常灵活且短小精干的web框架 , 那么灵活性从什么地方体现呢? 有一个神奇的东西叫 Flask配置 , 这个东西怎么用呢? 它能给我们带来怎么样的方便呢? 首先展示一下: from ...

  10. Spring---配置文件概述

    概述 Spring 的配置文件是用于指导 Spring 工厂进行Bean的生产.依赖关系注入及 Bean 实例分发的“图纸”,它是一个或多个标准的XML文档,J2EE 程序员必须学会并灵活应用这份“图 ...