Bag of mice  CodeForces - 148D

The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to an amicable agreement, so they decide to leave this up to chance.

They take turns drawing a mouse from a bag which initially contains w white and bblack mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice).Princess draws first. What is the probability of the princess winning?

If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.

Input

The only line of input data contains two integers w and b (0 ≤ w, b ≤ 1000).

Output

Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed 10 - 9.

Example

Input
1 3
Output
0.500000000
Input
5 5

Output

0.658730159

题意: 公主和龙玩一个抓老鼠的游戏。袋子里,有两种老鼠,W只白老鼠,b只黑老鼠。一次抓出一只老鼠,公主先抓,龙后抓,龙抓出一只老鼠后,剩下的老鼠中会逃跑掉任意一只(跑掉的这只不算任何人抓的)。先抓到白老鼠的获胜(公主除抓到白老鼠获胜外,其余情况都算输),求公主获胜的概率。

题解:

思考: 对于 w 只白老鼠,b 只黑老鼠,公主要赢的情况
(一) 直接抓到一只白老鼠,概率为 p1 = w/(w+b)
(二) 抓到一只黑老鼠,但是龙也抓住一只黑老鼠,概率为
p2 = (1-p1)*(b-1)/(w+b-1) 然后跑掉一只老鼠,再分两种
跑掉一只白的 p3=w/(w+b-2) 变为 w-1 , b-2 的状态
跑掉一只黑的 p4=(b-2)/(w+b-2) 变为 w , b-3 的状态

dp[i][j] 代表 i 只白老鼠, j 只黑老鼠公主获胜的概率

dp[i][j]=p1 + p2*p3*dp[i-1][j-2] + p2*p3*dp[i][j-3];

 #include <iostream>
#include <stdio.h>
using namespace std;
#define MAXN 1005
double dp[MAXN][MAXN]; void Init()
{
for (int i=;i<MAXN;i++)
{
for (int j=;j<MAXN;j++)
{
double p1=,p2=;
if (i>=)
p1 = (i*1.0)/(i+j); //公主赢
if (j>=)
p2 = (-p1)*(j-1.0)/(i+j-); //龙抓黑 double p3 = ,p4 = ;
if (i>=&&j>=) p3 = (i*1.0)/(i+j-);
if (j>=) p4 =(j-2.0)/(i+j-); dp[i][j]= p1;
if (j>=) dp[i][j]+=p2*p3*dp[i-][j-];
if (j>=) dp[i][j]+=p2*p4*dp[i][j-];
}
}
} int main()
{
Init();
int w,b;
scanf("%d%d",&w,&b);
printf("%.12lf\n",dp[w][b]);
return ;
}

Bag of mice(概率DP)的更多相关文章

  1. Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题

    除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...

  2. Codeforces Round #105 (Div. 2) D. Bag of mice 概率dp

    题目链接: http://codeforces.com/problemset/problem/148/D D. Bag of mice time limit per test2 secondsmemo ...

  3. CF 148D Bag of mice 概率dp 难度:0

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  4. codeforce 148D. Bag of mice[概率dp]

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  5. codeforces 148D Bag of mice(概率dp)

    题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...

  6. Codeforces 148D Bag of mice 概率dp(水

    题目链接:http://codeforces.com/problemset/problem/148/D 题意: 原来袋子里有w仅仅白鼠和b仅仅黑鼠 龙和王妃轮流从袋子里抓老鼠. 谁先抓到白色老师谁就赢 ...

  7. 抓老鼠 codeForce 148D - Bag of mice 概率DP

    设dp[i][j]为有白老鼠i只,黑老鼠j只时轮到公主取时,公主赢的概率. 那么当i = 0 时,为0 当j = 0时,为1 公主可直接取出白老鼠一只赢的概率为i/(i+j) 公主取出了黑老鼠,龙必然 ...

  8. Codeforces Round #105 D. Bag of mice 概率dp

    http://codeforces.com/contest/148/problem/D 题目意思是龙和公主轮流从袋子里抽老鼠.袋子里有白老师 W 仅仅.黑老师 D 仅仅.公主先抽,第一个抽出白老鼠的胜 ...

  9. codeforces105d Bag of mice ——概率DP

    Link: http://codeforces.com/problemset/problem/148/D Refer to: http://www.cnblogs.com/kuangbin/archi ...

随机推荐

  1. 文件流:"fopen","fclose",“ftell”"fseek","fgets","fprintf" ,“feof”,"fwrite","fread"

    char const* filename="D:/hello.txt"; 路径名使用的是“/”或者使用 转义字符“\\”: "fopen", FILE *fp= ...

  2. JAVA之接口与抽象类区别

    1.概述 一个软件设计的好坏,我想很大程度上取决于它的整体架构,而这个整体架构其实就是你对整个宏观商业业务的抽象框架,当代表业务逻辑的高层抽象层结构 合理时,你底层的具体实现需要考虑的就仅仅是一些算法 ...

  3. 转:MyBatis学习总结(Mybatis总结精华文章)

    http://www.cnblogs.com/xdp-gacl/tag/MyBatis%E5%AD%A6%E4%B9%A0%E6%80%BB%E7%BB%93/ 当前标签: MyBatis学习总结   ...

  4. jquery文件上传控件 Uploadify(转)

    原文:http://www.cnblogs.com/mofish/archive/2012/11/30/2796698.html 基于jquery的文件上传控件,支持ajax无刷新上传,多个文件同时上 ...

  5. 一分钟搞定触手app主页酷炫滑动切换效果

    代码地址如下:http://www.demodashi.com/demo/12826.html 前言: 前几天在看手机直播的时候,自己就用上了触手app.一进到主页就看上了里面页面切换的效果,自己想这 ...

  6. 基于RxJava2+Retrofit2精心打造的Android基础框架

    代码地址如下:http://www.demodashi.com/demo/12132.html XSnow 基于RxJava2+Retrofit2精心打造的Android基础框架,包含网络.上传.下载 ...

  7. 【SpringMVC学习09】SpringMVC与前台的json数据交互

    json数据格式在接口调用中.html页面中比较常用,json格式比较简单,解析也比较方便,所以使用很普遍.在springmvc中,也支持对json数据的解析和转换,这篇文章主要总结一下springm ...

  8. 用unity3d实现简单的主server连接

    用unity3d实现简单的主server连接 參考自鹰大的网络实例 -------------------------------------------------华丽的切割线----------- ...

  9. &lt;!DOCTYPE&gt;奇葩的问题

    作用:<!DOCTYPE> 声明不是 HTML 标签:它是指示 web 浏览器关于页面使用哪个 HTML 版本号进行编写的指令. 1.:<!DOCTYPE> 声明没有结束标签. ...

  10. Selenium3.X 与 Javascript (Nodejs)

    传送门 # 官网网站 http://docs.seleniumhq.org/download/ # API DOC http://goo.gl/hohAut # 慕课网教程http://www.imo ...