Bag of mice  CodeForces - 148D

The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to an amicable agreement, so they decide to leave this up to chance.

They take turns drawing a mouse from a bag which initially contains w white and bblack mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice).Princess draws first. What is the probability of the princess winning?

If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.

Input

The only line of input data contains two integers w and b (0 ≤ w, b ≤ 1000).

Output

Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed 10 - 9.

Example

Input
1 3
Output
0.500000000
Input
5 5

Output

0.658730159

题意: 公主和龙玩一个抓老鼠的游戏。袋子里,有两种老鼠,W只白老鼠,b只黑老鼠。一次抓出一只老鼠,公主先抓,龙后抓,龙抓出一只老鼠后,剩下的老鼠中会逃跑掉任意一只(跑掉的这只不算任何人抓的)。先抓到白老鼠的获胜(公主除抓到白老鼠获胜外,其余情况都算输),求公主获胜的概率。

题解:

思考: 对于 w 只白老鼠,b 只黑老鼠,公主要赢的情况
(一) 直接抓到一只白老鼠,概率为 p1 = w/(w+b)
(二) 抓到一只黑老鼠,但是龙也抓住一只黑老鼠,概率为
p2 = (1-p1)*(b-1)/(w+b-1) 然后跑掉一只老鼠,再分两种
跑掉一只白的 p3=w/(w+b-2) 变为 w-1 , b-2 的状态
跑掉一只黑的 p4=(b-2)/(w+b-2) 变为 w , b-3 的状态

dp[i][j] 代表 i 只白老鼠, j 只黑老鼠公主获胜的概率

dp[i][j]=p1 + p2*p3*dp[i-1][j-2] + p2*p3*dp[i][j-3];

 #include <iostream>
#include <stdio.h>
using namespace std;
#define MAXN 1005
double dp[MAXN][MAXN]; void Init()
{
for (int i=;i<MAXN;i++)
{
for (int j=;j<MAXN;j++)
{
double p1=,p2=;
if (i>=)
p1 = (i*1.0)/(i+j); //公主赢
if (j>=)
p2 = (-p1)*(j-1.0)/(i+j-); //龙抓黑 double p3 = ,p4 = ;
if (i>=&&j>=) p3 = (i*1.0)/(i+j-);
if (j>=) p4 =(j-2.0)/(i+j-); dp[i][j]= p1;
if (j>=) dp[i][j]+=p2*p3*dp[i-][j-];
if (j>=) dp[i][j]+=p2*p4*dp[i][j-];
}
}
} int main()
{
Init();
int w,b;
scanf("%d%d",&w,&b);
printf("%.12lf\n",dp[w][b]);
return ;
}

Bag of mice(概率DP)的更多相关文章

  1. Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题

    除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...

  2. Codeforces Round #105 (Div. 2) D. Bag of mice 概率dp

    题目链接: http://codeforces.com/problemset/problem/148/D D. Bag of mice time limit per test2 secondsmemo ...

  3. CF 148D Bag of mice 概率dp 难度:0

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  4. codeforce 148D. Bag of mice[概率dp]

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  5. codeforces 148D Bag of mice(概率dp)

    题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...

  6. Codeforces 148D Bag of mice 概率dp(水

    题目链接:http://codeforces.com/problemset/problem/148/D 题意: 原来袋子里有w仅仅白鼠和b仅仅黑鼠 龙和王妃轮流从袋子里抓老鼠. 谁先抓到白色老师谁就赢 ...

  7. 抓老鼠 codeForce 148D - Bag of mice 概率DP

    设dp[i][j]为有白老鼠i只,黑老鼠j只时轮到公主取时,公主赢的概率. 那么当i = 0 时,为0 当j = 0时,为1 公主可直接取出白老鼠一只赢的概率为i/(i+j) 公主取出了黑老鼠,龙必然 ...

  8. Codeforces Round #105 D. Bag of mice 概率dp

    http://codeforces.com/contest/148/problem/D 题目意思是龙和公主轮流从袋子里抽老鼠.袋子里有白老师 W 仅仅.黑老师 D 仅仅.公主先抽,第一个抽出白老鼠的胜 ...

  9. codeforces105d Bag of mice ——概率DP

    Link: http://codeforces.com/problemset/problem/148/D Refer to: http://www.cnblogs.com/kuangbin/archi ...

随机推荐

  1. kata-container环境搭建

    一.安装qemu 注意,目前kata-container所要求的qemu最低版本是v2.7.0.在笔者的环境下(Ubuntu16.04 VM),apt-get官方源的最高版本是v2.5.0.所以不要用 ...

  2. CentOS7.4 x64环境Percona-Server-5.6安装

    CentOS7.4 x64环境Percona-Server-5.6安装 下载MySQL $ cd /usr/local/src/ $ wget https://www.percona.com/down ...

  3. selenium的PageObject设计模式

    PageObject设计模式1. Web自动化测试框架(WebTestFramework)是基于Selenium框架且采用PageObject设计模式进行二次开发形成的框架. 2. web测试时,建议 ...

  4. Swagger2 (3) 集成easymock 生成mock 测试数据

    转载:http://blog.csdn.net/sai739295732/article/details/73957138 2.可以集成swagger 3.我们来玩一下 首先你需要一个swagger ...

  5. OSQL.EXE 命令行下脱裤mssql

    cd C:\Program Files\Microsoft SQL Server\100\Tools\Binn\ OSQL.EXE -S "localhost" -U " ...

  6. 小结:VB.NET机房收费系统个人版

    经过几天的缝缝补补,自己的个人版最终OK了,!或许是由于有第一次的机房收费系统的经验,这次做,感觉很亲切. 在业务逻辑方面,沿袭曾经的逻辑.做了一点升级.可是修改不大. 在数据库方面,感觉自己从一个小 ...

  7. react 打包后,项目部署完毕,刷新页面报错(404)

    原因解析: 之所以你在浏览器内可以由首页跳转到其他路由地址,是因为这是由前端自行渲染的,你在React Router定义了对应的路由,脚本并没有刷新网页访问后台,是JS动态更改了location. 当 ...

  8. python 搭建环境

    直接命令行里面 1.进入相应的目录 ,然后python,然后python setup.py 2.或者直接python C:\Python27\Lib\site-packages\xlrd-0.9.3\ ...

  9. javascript 冒泡排序算法

    <!DOCTYPE html> <html lang="zh"> <head> <meta charset="UTF-8&quo ...

  10. HBase数据同步到ElasticSearch的方案

    ElasticSearch的River机制 ElasticSearch自身提供了一个River机制,用于同步数据. 这里能够找到官方眼下推荐的River: http://www.elasticsear ...