import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

#载入数据集
mnist = input_data.read_data_sets("F:\\TensorflowProject\\MNIST_data",one_hot=True)

#每个批次的大小,训练时一次100张放入神经网络中训练
batch_size = 100

#计算一共有多少个批次
n_batch = mnist.train.num_examples//batch_size

#定义两个placeholder
x = tf.placeholder(tf.float32,[None,784])
#0-9十个数字
y = tf.placeholder(tf.float32,[None,10])

#创建一个神经网络
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
prediction = tf.nn.softmax(tf.matmul(x,W)+b)

#二次代价函数
#loss = tf.reduce_mean(tf.square(y-prediction))
#交叉熵代价函数
#使用交叉熵定义代价函数,可以加快模型收敛速度
#loss = tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
#使用梯度下降法
#train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
train_step = tf.train.AdamOptimizer(0.01).minimize(loss) #1e-2

#初始化变量
init = tf.global_variables_initializer()

#结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

#
with tf.Session() as sess:
  sess.run(init)
  for epoch in range(21):
    for batch in range(n_batch):
      batch_xs,batch_ys = mnist.train.next_batch(batch_size)
      sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})

    #测试准确率
    acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
    print("Iter: "+str(epoch)+" ,Testing Accuracy "+str(acc))

###########运行结果

Extracting F:\TensorflowProject\MNIST_data\train-images-idx3-ubyte.gz
Extracting F:\TensorflowProject\MNIST_data\train-labels-idx1-ubyte.gz
Extracting F:\TensorflowProject\MNIST_data\t10k-images-idx3-ubyte.gz
Extracting F:\TensorflowProject\MNIST_data\t10k-labels-idx1-ubyte.gz
Iter: 0 ,Testing Accuracy 0.9221
Iter: 1 ,Testing Accuracy 0.9133
Iter: 2 ,Testing Accuracy 0.9271
Iter: 3 ,Testing Accuracy 0.9262
Iter: 4 ,Testing Accuracy 0.9299
Iter: 5 ,Testing Accuracy 0.9293
Iter: 6 ,Testing Accuracy 0.9301
Iter: 7 ,Testing Accuracy 0.9299
Iter: 8 ,Testing Accuracy 0.9287
Iter: 9 ,Testing Accuracy 0.9319
Iter: 10 ,Testing Accuracy 0.9317
Iter: 11 ,Testing Accuracy 0.9315
Iter: 12 ,Testing Accuracy 0.9307
Iter: 13 ,Testing Accuracy 0.932
Iter: 14 ,Testing Accuracy 0.9314
Iter: 15 ,Testing Accuracy 0.9316
Iter: 16 ,Testing Accuracy 0.9311
Iter: 17 ,Testing Accuracy 0.9333
Iter: 18 ,Testing Accuracy 0.9318
Iter: 19 ,Testing Accuracy 0.9318
Iter: 20 ,Testing Accuracy 0.9289

Tensorflow学习—— AdamOptimizer的更多相关文章

  1. 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别

    深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...

  2. tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)

    tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例 ...

  3. tensorflow学习笔记——自编码器及多层感知器

    1,自编码器简介 传统机器学习任务很大程度上依赖于好的特征工程,比如对数值型,日期时间型,种类型等特征的提取.特征工程往往是非常耗时耗力的,在图像,语音和视频中提取到有效的特征就更难了,工程师必须在这 ...

  4. TensorFlow学习笔记——LeNet-5(训练自己的数据集)

    在之前的TensorFlow学习笔记——图像识别与卷积神经网络(链接:请点击我)中了解了一下经典的卷积神经网络模型LeNet模型.那其实之前学习了别人的代码实现了LeNet网络对MNIST数据集的训练 ...

  5. tensorflow学习笔记——使用TensorFlow操作MNIST数据(1)

    续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有He ...

  6. TensorFlow学习笔记10-卷积网络

    卷积网络 卷积神经网络(Convolutional Neural Network,CNN)专门处理具有类似网格结构的数据的神经网络.如: 时间序列数据(在时间轴上有规律地采样形成的一维网格): 图像数 ...

  7. Tensorflow学习笔记2:About Session, Graph, Operation and Tensor

    简介 上一篇笔记:Tensorflow学习笔记1:Get Started 我们谈到Tensorflow是基于图(Graph)的计算系统.而图的节点则是由操作(Operation)来构成的,而图的各个节 ...

  8. 用tensorflow学习贝叶斯个性化排序(BPR)

    在贝叶斯个性化排序(BPR)算法小结中,我们对贝叶斯个性化排序(Bayesian Personalized Ranking, 以下简称BPR)的原理做了讨论,本文我们将从实践的角度来使用BPR做一个简 ...

  9. Tensorflow学习笔记2019.01.22

    tensorflow学习笔记2 edit by Strangewx 2019.01.04 4.1 机器学习基础 4.1.1 一般结构: 初始化模型参数:通常随机赋值,简单模型赋值0 训练数据:一般打乱 ...

随机推荐

  1. Hive数据导入——数据存储在Hadoop分布式文件系统中,往Hive表里面导入数据只是简单的将数据移动到表所在的目录中!

    转自:http://blog.csdn.net/lifuxiangcaohui/article/details/40588929 Hive是基于Hadoop分布式文件系统的,它的数据存储在Hadoop ...

  2. 初学者的Node.js学习历程

    废话篇: 对于我这个新手的不能再白菜的人来说,nodejs的大名都有耳闻,所以说他是一项不可不克服的技能也是可以说的.但是之前没有搞清楚的情况之下胡乱的猜测,是的我对node.js没有一个具体的概念的 ...

  3. LeetCode OJ:Sort Colors(排序颜色)

    Given an array with n objects colored red, white or blue, sort them so that objects of the same colo ...

  4. 清理svn.bat

     @echo on  color 2f  mode con: cols=80 lines=25  @REM  @echo 正在清理SVN文件,请稍候......  @rem 循环删除当前目录及子目录下 ...

  5. bzoj 1009 [HNOI2008]GT考试——kmp+矩阵优化dp

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 首先想到 确保模式串不出现 就是 确保每个位置的后缀不是该模式串. 为了dp,需要记录 ...

  6. 解决方案: the selected file is a solution file but was created by a newer version of this application and cannot be opened

    最近在用IronGithub访问Github api时遇到一个问题: the selected file is a solution file but was created by a newer v ...

  7. java代码随机数100个,10个一输出显示======

    总结:空格???懂否?如何显示 for(int i=0;i<100;i++){ if(i%10==0){ System.out.println(); } System.out.print(n[i ...

  8. Java-API:java.lang百科

    ylbtech-Java-API:java.lang百科 java.lang是提供利用 Java 编程语言进行程序设计的基础类.最重要的类是Object(它是类层次结构的根)和 Class(它的实例表 ...

  9. linux下面的df命令

    linux中df命令的功能是用来检查linux服务器的文件系统的磁盘空间占用情况.可以利用该命令来获取硬盘被占用了多少空间,目前还剩下多少空间等信息. 1.命令格式: df [选项] [文件] 2.命 ...

  10. WCF宿主Window Service Demo

    尝试了下将服务寄宿在window 服务上.具体步骤如下 整个解决方案截图 一.创建window 服务 Wcf.WinService namespace Wcf.WinService { public ...