Caocao's Bridges

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Description

Caocao was defeated by Zhuge Liang and Zhou Yu in the battle of Chibi. But he wouldn't give up. Caocao's army still was not good at water battles, so he came up with another idea. He built many islands in the Changjiang river, and based on those islands, Caocao's army could easily attack Zhou Yu's troop. Caocao also built bridges connecting islands. If all islands were connected by bridges, Caocao's army could be deployed very conveniently among those islands. Zhou Yu couldn't stand with that, so he wanted to destroy some Caocao's bridges so one or more islands would be seperated from other islands. But Zhou Yu had only one bomb which was left by Zhuge Liang, so he could only destroy one bridge. Zhou Yu must send someone carrying the bomb to destroy the bridge. There might be guards on bridges. The soldier number of the bombing team couldn't be less than the guard number of a bridge, or the mission would fail. Please figure out as least how many soldiers Zhou Yu have to sent to complete the island seperating mission.
 

Input

There are no more than 12 test cases.

In each test case:

The first line contains two integers, N and M, meaning that there are N islands and M bridges. All the islands are numbered from 1 to N. ( 2 <= N <= 1000, 0 < M <= N 2 )

Next M lines describes M bridges. Each line contains three integers U,V and W, meaning that there is a bridge connecting island U and island V, and there are W guards on that bridge. ( U ≠ V and 0 <= W <= 10,000 )

The input ends with N = 0 and M = 0.

 

Output

For each test case, print the minimum soldier number Zhou Yu had to send to complete the mission. If Zhou Yu couldn't succeed any way, print -1 instead.
 

Sample Input

3 3
1 2 7
2 3 4
3 1 4
3 2
1 2 7
2 3 4
0 0
 

Sample Output

-1

4
 
题目大意:曹操占领了n个岛,同时修建了m条大桥,每个桥上有wi个士兵守卫。周瑜要炸掉一个大桥,让这n个岛不再成为连通的的,如果要炸掉某个大桥,则必须最少派遣人数应大于等于该大桥上的守卫个数。问你需要最少派去多少人。
 
解题思路:很明显的是无向图求割边/桥,更准确得说要求的是割边的边权最小。模板题难度。但是这个题目比较坑:1.如果这n个岛本身就是不连通的  2.如果某条大桥上的士兵为0,但是仍需要派1人去炸毁
 
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<queue>
#include<vector>
using namespace std;
const int maxn = 1010;
const int INF = 0x3f3f3f3f;
struct Edge{
int from,to,dist,next;
Edge(){}
Edge(int _to,int _next,int _dist):to(_to),next(_next),dist(_dist){}
}edges[maxn*maxn*2];
int tot , head[maxn];
int dfn[maxn], bridge[maxn], dfs_clock, low[maxn], brinum;
int Mins;
void init(){
tot = 0;
dfs_clock = 0;
brinum = 0;
Mins = INF;
memset(head,-1,sizeof(head));
memset(dfn,0,sizeof(dfn));
memset(bridge,0,sizeof(bridge));
}
void AddEdge(int _u,int _v,int _w){
edges[tot] = Edge(_v,head[_u],_w);
head[_u] = tot++;
}
int dfs(int u,int fa){
int lowu = dfn[u] = ++dfs_clock;
for(int i = head[u]; i != -1; i = edges[i].next){
int v = edges[i].to;
if(!dfn[v]){
int lowv = dfs(v,i);
lowu = min(lowu,lowv);
if(lowv > dfn[u]){
bridge[v] = 1;
brinum++;
Mins = min(Mins , edges[i].dist);
}
}else if(dfn[v] < dfn[u] && (fa^1) != i){
lowu = min(dfn[v],lowu);
}
}
low[u] = lowu;
return lowu;
}
int main(){
int n,m;
while(scanf("%d%d",&n,&m)!=EOF&&(n+m)){
int a,b,c;
init();
for(int i = 0; i <m ;i++){
scanf("%d%d%d",&a,&b,&c);
AddEdge(a,b,c);
AddEdge(b,a,c);
}
int times = 0;
for(int i = 1; i <= n; i++){
if(!dfn[i]){
times++;
dfs(i,-1);
}
}
if(times > 1){
puts("0");
continue;
}
if(brinum == 0){
puts("-1");
continue;
}
printf("%d\n",Mins == 0? 1:Mins);
}
return 0;
}

  

 
 
 

HDU 4738——Caocao's Bridges——————【求割边/桥的最小权值】的更多相关文章

  1. Hdu 4738 Caocao's Bridges (连通图+桥)

    题目链接: Hdu 4738 Caocao's Bridges 题目描述: 有n个岛屿,m个桥,问是否可以去掉一个花费最小的桥,使得岛屿边的不连通? 解题思路: 去掉一个边使得岛屿不连通,那么去掉的这 ...

  2. hdu 4738 Caocao's Bridges 求无向图的桥【Tarjan】

    <题目链接> 题目大意: 曹操在长江上建立了一些点,点之间有一些边连着.如果这些点构成的无向图变成了连通图,那么曹操就无敌了.周瑜为了防止曹操变得无敌,就打算去摧毁连接曹操的点的桥.但是诸 ...

  3. HDU 4738 Caocao's Bridges ——(找桥,求联通块)

    题意:给你一个无向图,给你一个炸弹去炸掉一条边,使得整个图不再联通,你需要派人去安置炸弹,且派去的人至少要比这条边上的人多.问至少要派去多少个,如果没法完成,就输出-1. 分析:如果这个图是已经是多个 ...

  4. HDU 4738 Caocao's Bridges(割边)

    乍一看一个模板题,仔细一看还是模板题,但是三个坑.1,不是连通图,放0个.2 守卫为0,放1个. 3注意重边. #include<iostream> #include<cstdio& ...

  5. hdu 4738 Caocao's Bridges(割边)

    题目链接 用tarjan求桥上的最小权值 #include<bits/stdc++.h> #define ll long long int using namespace std; inl ...

  6. hdu 4738 Caocao's Bridges(2013杭州网络赛丶神坑)

    就是求最小权值的桥..不过有好几个坑... 1:原图不连通,ans=0. 2: m<=n^2 显然有重边,重边必然不是桥,处理重边直接add(u, v, INF). 3:   最小桥边权为0的时 ...

  7. HDU 4738 Caocao's Bridges(Tarjan求桥+重边判断)

    Caocao's Bridges Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  8. hdu 4738 Caocao's Bridges (tarjan求桥)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4738 题目大意:给一些点,用一些边把这些点相连,每一条边上有一个权值.现在要你破坏任意一个边(要付出相 ...

  9. HDU 4738 Caocao's Bridges (2013杭州网络赛1001题,连通图,求桥)

    Caocao's Bridges Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

随机推荐

  1. SQL:bat批处理多个.sql文件

    一.批处理文件 update.bat       设置sqlserver的实例     记得一定要配置logfile文件 @echo off :: #### B. #### set LOGFILE=& ...

  2. Tomcat 集群 + Redis Session 共享出现 Session 瞬间失效问题

    写在前面的话 写这篇博客出于公司最近要迁移到新的云上面且对之前的资源,架构做一个升级. 本来是一个不大的项目,旧环境旧一个 TOMCAT 跑起来,不过出于高可用考虑,新环境决定使用 TOMCAT 集群 ...

  3. MySQL的ODBC安装错误问题!

    MySQL的ODBC安装时候可能会出错,主要原因是缺少VC支持库,需要2010版本的VC支持库!!X86和X64分别对应MySQL对应的ODBC,不能安装一个两个都搞定,如果需要安装两个ODBC驱动, ...

  4. poj3167(kmp)

    题目链接: http://poj.org/problem?id=3167 题意: 给出两串数字 s1, s2, 求主串 s1 中的 s2 匹配数并输出每个匹配的开头位置. 区间 [l, r] 是 s2 ...

  5. Java foreach remove问题分析

    原文链接:http://www.cnblogs.com/chrischennx/p/9610853.html 都说ArrayList在用foreach循环的时候,不能add元素,也不能remove元素 ...

  6. rem原理

    rem布局实际上就是实现等比缩放 试想,如果我们的元素在不同的屏幕上可以按照相同的比例来进行缩放就好了. rem的计算原理: 试想把屏幕平均分成10份,那么每一份就是1/10,我们选择每一份的大小是1 ...

  7. php http 缓存(客户端缓存)

    <?php /* * Expires:过期时间 * Cache-Control: 响应头信息 * (max-age:[秒]缓存过期时间(请求时间开始到过期时间的秒数), * s-maxage:[ ...

  8. 13.Convert BST to Greater Tree(将树转为更大树)

    Level:   Easy 题目描述: Given a Binary Search Tree (BST), convert it to a Greater Tree such that every k ...

  9. stdin stdout stderr 标准I/O流

    Unix中一切皆文件,磁盘等设备在操作系统来看都是文件. 对文件进行操作时,需要打开这个文件,并获得文件描述符(file descriptor, fd) 而每个进程生来就有三个文件描述符绑定在它身上, ...

  10. 1001 害死人不偿命的(3n+1)猜想 (15)(15 分)

    卡拉兹(Callatz)猜想: 对任何一个自然数n,如果它是偶数,那么把它砍掉一半:如果它是奇数,那么把(3n+1)砍掉一半.这样一直反复砍下去,最后一定在某一步得到n=1.卡拉兹在1950年的世界数 ...