//加载需要的包

import org.apache.spark.rdd._
import org.apache.spark.mllib.recommendation.{ALS, Rating, MatrixFactorizationModel} //读取数据
val ratings = sc.textFile("D:/BaiduYunDownload/machine-learning/movielens/medium/ratings.dat").map { line =>
val fields = line.split("::")
(fields(3).toLong % 10, Rating(fields(0).toInt, fields(1).toInt, fields(2).toDouble))
}

//数据情况探索(评分数,用户数,物品数)
val numRatings = ratings.count()
val numUsers = ratings.map(_._2.user).distinct().count()
val numMovies = ratings.map(_._2.product).distinct().count()
println("Got " + numRatings + " ratings from " + numUsers + " users on " + numMovies + " movies.")

 

//某个人评分数据

val myRatingsRDD = sc.textFile("D:/BaiduYunDownload/machine-learning/bin/personalRatings.txt").map { line =>
val fields = line.split("::")
Rating(fields(0).toInt, fields(1).toInt, fields(2).toDouble)
}

 

//拆分训练集,校验集,测试集(ratings是(Int,Rating)格式,取values即可)

val numPartitions = 4
val training = ratings.filter(x => x._1 < 6)
.values
.union(myRatingsRDD) //加入个人评分数据
.repartition(numPartitions)
.cache()
val validation = ratings.filter(x => x._1 >= 6 && x._1 < 8)
.values
.repartition(numPartitions)
.cache()
val test = ratings.filter(x => x._1 >= 8).values.cache()
val numTraining = training.count()
val numValidation = validation.count()
val numTest = test.count()
println("Training: " + numTraining + ", validation: " + numValidation + ", test: " + numTest)

 
// 校验集预测数据和实际数据之间的均方根误差
def computeRmse(model: MatrixFactorizationModel, data: RDD[Rating], n: Long): Double = {
val predictions: RDD[Rating] = model.predict(data.map(x => (x.user, x.product)))
val predictionsAndRatings = predictions.map(x => ((x.user, x.product), x.rating))
.join(data.map(x => ((x.user, x.product), x.rating)))
.values
math.sqrt(predictionsAndRatings.map(x => (x._1 - x._2) * (x._1 - x._2)).reduce(_ + _) / n)
}
 
//训练不同参数下的模型,并在校验集中验证,获取最佳参数下的模型
val ranks = List(8, 12)
val lambdas = List(0.1, 10.0)
val numIters = List(10, 20)
var bestModel: Option[MatrixFactorizationModel] = None
var bestValidationRmse = Double.MaxValue
var bestRank = 0
var bestLambda = -1.0
var bestNumIter = -1
for (rank <- ranks; lambda <- lambdas; numIter <- numIters) {
val model = ALS.train(training, rank, numIter, lambda)
val validationRmse = computeRmse(model, validation, numValidation)
println("RMSE (validation) = " + validationRmse + " for the model trained with rank = "
+ rank + ", lambda = " + lambda + ", and numIter = " + numIter + ".")
if (validationRmse < bestValidationRmse) {
bestModel = Some(model)
bestValidationRmse = validationRmse
bestRank = rank
bestLambda = lambda
bestNumIter = numIter
}
}
 
//用最佳模型作用于测试集,并计算预测评分和实际评分之间的均方根误差
val testRmse = computeRmse(bestModel.get, test, numTest)
println("The best model was trained with rank = " + bestRank + " and lambda = " + bestLambda
+ ", and numIter = " + bestNumIter + ", and its RMSE on the test set is " + testRmse + ".")


 
//比较将最佳模型作用于测试集的结果:testRmse 与 仅仅用均值预测的结果进行比较,计算模型提升度。
val meanRating = training.union(validation).map(_.rating).mean
val baselineRmse = math.sqrt(test.map(x => (meanRating - x.rating) * (meanRating - x.rating)).mean)
val improvement = (baselineRmse - testRmse) / baselineRmse * 100
println("The best model improves the baseline by " + "%1.2f".format(improvement) + "%.")


 
//装载电影目录对照表(电影ID->电影标题)
val movies = sc.textFile("D:/BaiduYunDownload/machine-learning/movielens/medium/movies.dat").map { line =>
val fields = line.split("::")
(fields(0).toInt, fields(1))
}.collect().toMap

 
// 推荐前十部最感兴趣的电影,注意要剔除用户已经评分的电影
val myRatedMovieIds = myRatingsRDD.map(_.product).collect().toSet
val candidates = sc.parallelize(movies.keys.filter(!myRatedMovieIds.contains(_)).toSeq)
val recommendations = bestModel.get{
.predict(candidates.map((0, _)))
.collect()
.sortBy(-_.rating)
.take(10)}

 
  //打印结果

var i = 1
println("Movies recommended for you:")
recommendations.foreach { r =>
println("%2d".format(i) + ": " + movies(r.product))
i += 1
}


 over!!

  

基于mllib的协同过滤实战(电影推荐)的更多相关文章

  1. 基于用户的协同过滤的电影推荐算法(tensorflow)

    数据集: https://grouplens.org/datasets/movielens/ ml-latest-small 协同过滤算法理论基础 https://blog.csdn.net/u012 ...

  2. 基于用户的协同过滤电影推荐user-CF python

    协同过滤包括基于物品的协同过滤和基于用户的协同过滤,本文基于电影评分数据做基于用户的推荐 主要做三个部分:1.读取数据:2.构建用户与用户的相似度矩阵:3.进行推荐: 查看数据u.data 主要用到前 ...

  3. 基于物品的协同过滤item-CF 之电影推荐 python

    推荐算法有基于协同的Collaboration Filtering:包括 user Based和item Based:基于内容 : Content Based 协同过滤包括基于物品的协同过滤和基于用户 ...

  4. 【推荐系统实战】:C++实现基于用户的协同过滤(UserCollaborativeFilter)

    好早的时候就打算写这篇文章,可是还是參加阿里大数据竞赛的第一季三月份的时候实验就完毕了.硬生生是拖到了十一假期.自己也是醉了... 找工作不是非常顺利,希望写点东西回想一下知识.然后再攒点人品吧,仅仅 ...

  5. 推荐召回--基于用户的协同过滤UserCF

    目录 1. 前言 2. 原理 3. 数据及相似度计算 4. 根据相似度计算结果 5. 相关问题 5.1 如何提炼用户日志数据? 5.2 用户相似度计算很耗时,有什么好的方法? 5.3 有哪些改进措施? ...

  6. 基于物品的协同过滤推荐算法——读“Item-Based Collaborative Filtering Recommendation Algorithms” .

    ligh@local-host$ ssh-copy-id -i ~/.ssh/id_rsa.pub root@192.168.0.3 基于物品的协同过滤推荐算法--读"Item-Based ...

  7. 推荐召回--基于物品的协同过滤:ItemCF

    目录 1. 前言 2. 原理&计算&改进 3. 总结 1. 前言 说完基于用户的协同过滤后,趁热打铁,我们来说说基于物品的协同过滤:"看了又看","买了又 ...

  8. Spark MLlib之协同过滤

    原文:http://blog.selfup.cn/1001.html 什么是协同过滤 协同过滤(Collaborative Filtering, 简称CF),wiki上的定义是:简单来说是利用某兴趣相 ...

  9. Music Recommendation System with User-based and Item-based Collaborative Filtering Technique(使用基于用户及基于物品的协同过滤技术的音乐推荐系统)【更新】

    摘要: 大数据催生了互联网,电子商务,也导致了信息过载.信息过载的问题可以由推荐系统来解决.推荐系统可以提供选择新产品(电影,音乐等)的建议.这篇论文介绍了一个音乐推荐系统,它会根据用户的历史行为和口 ...

随机推荐

  1. 基于TMF SID的高可扩展性数据模型

    基于TMF SID的高可扩展性数据模型 前言 此文根据TMF SID规范撰写,欢迎大家提出建议和意见. TMF文档版权信息 Copyright © TeleManagement Forum 2013. ...

  2. [CentOS7] 设置开机启动方式(图形界面或命令行)

    由于CenOS之前一直都是通过修改inittab文件来修改开机启动模式,于是 通过 vim /etc/inittab 打开inittab来查看 如上所示,CentOS 7由于使用systemd而不是i ...

  3. return die exit 常用

    die()停止程序运行,输出内容exit是停止程序运行,不输出内容return是返回值die是遇到错误才停止exit是直接停止,并且不运行后续代码,exit()可以显示内容.return就是纯粹的返回 ...

  4. java解析xml实例——获取天气信息

    获取xml并解析其中的数据: package getweather.xml; import java.io.IOException; import java.util.HashMap; import ...

  5. Eclipse下tomcat输出路径配置

    在Eclipse下配置server为Tomcat(一般为Tomcat 6.X),双击server面板中的Tomcat v6.0 Server,出现的Server Locations配置有三个选项: 1 ...

  6. LeetCode初级算法(动态规划+设计问题篇)

    目录 爬楼梯 买卖股票的最佳时机 最大子序和 打家劫舍 动态规划小结 Shuffle an Array 最小栈 爬楼梯 第一想法自然是递归,而且爬楼梯很明显是一个斐波拉切数列,所以就有了以下代码: c ...

  7. Uva1149

    每个bin最多只能放两个,所以最佳的贪心策略是从大的开始放,如果有空间放第二个,尽量放最大的. #include <bits/stdc++.h> using namespace std; ...

  8. Java 中常用的数据源

    数据源:存储了所有建立数据库连接的信息.就象通过指定文件名你可以在文件系统中找到文件一样,通过提供正确的数据源名称,你可以找到相应的数据库连接. 1.JNDI方式创建DataSource 1.1 配置 ...

  9. 034 Search for a Range 搜索范围

    给定一个已经升序排序的整形数组,找出给定目标值的开始位置和结束位置.你的算法时间复杂度必须是 O(log n) 级别.如果在数组中找不到目标,返回 [-1, -1].例如:给出 [5, 7, 7, 8 ...

  10. Codeforces Beta Round #79 (Div. 1 Only) B. Buses 树状数组

    http://codeforces.com/contest/101/problem/B 给定一个数n,起点是0  终点是n,有m两车,每辆车是从s开去t的,我们只能从[s,s+1,s+2....t-1 ...