传送门

分析

我们知道

$\varphi * 1 = id$

$\mu * 1 = e$

杜教筛即可

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<ctime>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<unordered_map>
using namespace std;
const int N = 5e6;
unordered_map<int,long long>phi;
unordered_map<int,int>mu;
unordered_map<int,bool>visp,vism;
long long _p[N+];
int _m[N+];
int cnt,p[N];
bool is[N+];
inline long long get_phi(int x){
if(x<=N)return _p[x];
if(visp[x])return phi[x];
long long res=(long long)x*(x+)/;
int le=,ri;
for(;le<=x;le=ri+){
ri=x/(x/le);
res-=(ri-le+)*get_phi(x/le);
}
visp[x]=;return phi[x]=res;
}
inline int get_mu(int x){
if(x<=N)return _m[x];
if(vism[x])return mu[x];
int res=,le=,ri;
for(;le<=x;le=ri+){
ri=x/(x/le);
res-=(ri-le+)*get_mu(x/le);
}
vism[x]=;return mu[x]=res;
}
inline void go(){
register int i,j,k;
_p[]=_m[]=;
for(i=;i<=N;++i){
if(!is[i])p[++cnt]=i,_m[i]=-,_p[i]=i-;
for(j=;j<=cnt,i*p[j]<=N;++j){
is[p[j]*i]=;
if(i%p[j]==){
_m[i*p[j]]=;
_p[i*p[j]]=_p[i]*p[j];
break;
}
_m[i*p[j]]=-_m[i];
_p[i*p[j]]=_p[i]*(p[j]-);
}
}
for(i=;i<=N;++i)_p[i]+=_p[i-],_m[i]+=_m[i-];
}
int main(){
int n,t;
scanf("%d",&t);
go();
while(t--){
scanf("%d",&n);
printf("%lld %d\n",get_phi(n),get_mu(n));
}
return ;
}

p4213 【模板】杜教筛(Sum)的更多相关文章

  1. [模板] 杜教筛 && bzoj3944-Sum

    杜教筛 浅谈一类积性函数的前缀和 - skywalkert's space - CSDN博客 杜教筛可以在\(O(n^{\frac 23})\)的时间复杂度内利用卷积求出一些积性函数的前缀和. 算法 ...

  2. luoguP4213 [模板]杜教筛

    https://www.luogu.org/problemnew/show/P4213 同 bzoj3944 考虑用杜教筛求出莫比乌斯函数前缀和,第二问随便过,第一问用莫比乌斯反演来做,中间的整除分块 ...

  3. 洛谷P4213(杜教筛)

    #include <bits/stdc++.h> using namespace std; typedef long long LL; const int maxn = 3e6 + 3; ...

  4. LG4213 【模板】杜教筛(Sum)和 BZOJ4916 神犇和蒟蒻

    P4213 [模板]杜教筛(Sum) 题目描述 给定一个正整数$N(N\le2^{31}-1)$ 求 $$ans_1=\sum_{i=1}^n\varphi(i)$$ $$ans_2=\sum_{i= ...

  5. 51NOD 1222 最小公倍数计数 [莫比乌斯反演 杜教筛]

    1222 最小公倍数计数 题意:求有多少数对\((a,b):a<b\)满足\(lcm(a,b) \in [1, n]\) \(n \le 10^{11}\) 卡内存! 枚举\(gcd, \fra ...

  6. [洛谷P4213]【模板】杜教筛(Sum)

    题目大意:给你$n$,求:$$\sum\limits_{i=1}^n\varphi(i),\sum\limits_{i=1}^n\mu(i)$$最多$10$组数据,$n\leqslant2^{31}- ...

  7. P4213 【模板】杜教筛(Sum)

    \(\color{#0066ff}{题 目 描 述}\) 给定一个正整数\(N(N\le2^{31}-1)\) 求 \(\begin{aligned} ans_1=\sum_{i=1}^n\varph ...

  8. P4213【模板】杜教筛(Sum)

    思路:杜教筛 提交:\(2\)次 错因:\(\varphi(i)\)的前缀和用\(int\)存的 题解: 对于一类筛积性函数前缀和的问题,杜教筛可以以低于线性的时间复杂度来解决问题. 先要构造\(h= ...

  9. BZOJ3944: Sum(杜教筛模板)

    BZOJ3944: Sum(杜教筛模板) 题面描述 传送门 题目分析 求\(\sum_{i=1}^{n}\mu(i)\)和\(\sum_{i=1}^{n}\varphi(i)\) 数据范围线性不可做. ...

随机推荐

  1. hive_学习_02_hive整合hbase(失败)

    一.前言 本文承接上一篇:hive_学习_01_hive环境搭建(单机) ,主要是记录 hive 整合hbase的流程 二.环境准备 1.环境准备 操作系统 : linux CentOS 6.8 jd ...

  2. 浅学soap--------3

    //person.wsdl 标签 <?xml version="1.0" ?> <definitions name="person" targ ...

  3. .net remoting和wcf自托管——一个bug引发的警示

    一.解决问题,需要深入,并从细节入手,多从代码找原因,不能认为代码是死的,不会出错: 之前代码都运行良好,突然某一天,在我电脑上出问题了.出了问题,那就应该找出原因.其实这个问题,本身并不难,好歹给你 ...

  4. POJ2831(次小生成树问题)

    Can We Build This One? Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 1475   Accepted: ...

  5. 机器学习:评价分类结果(ROC 曲线)

    一.基础理解 1)定义 ROC(Receiver Operation Characteristic Curve) 定义:描述 TPR 和 FPR 之间的关系: 功能:应用于比较两个模型的优劣: 模型不 ...

  6. 【转】 Pro Android学习笔记(八十):服务(5):访问远程服务

    目录(?)[-] Client的AIDL文件 Client的代码 建立连接 请求服务 断开连接 文章转载只能用于非商业性质,且不能带有虚拟货币.积分.注册等附加条件.转载须注明出处:http://bl ...

  7. HTTP:HTTP百科

    ylbtech-HTTP:HTTP百科 超文本传输协议(HTTP,HyperText Transfer Protocol)是互联网上应用最为广泛的一种网络协议.所有的WWW文件都必须遵守这个标准.设计 ...

  8. Regexp:template

    ylbtech-Regexp: 1.返回顶部 1.   2. 2.返回顶部   3.返回顶部   4.返回顶部   5.返回顶部     6.返回顶部   7.返回顶部   8.返回顶部   9.返回 ...

  9. spring特点与好处

    Spring是一个开源框架,Spring是于2003 年兴起的一个轻量级的Java 开发框架,由Rod Johnson 在其著作Expert One-On-One J2EE Development a ...

  10. 问题:oracle字符串函数;结果:Oracle字符串函数

    Oracle字符串函数 最近换了新公司,又用回Oracle数据库了,很多东西都忘记了,只是有个印象,这两晚抽了点时间,把oracle对字符串的一些处理函数做了一下整理,供日后查看.. 平常我们用Ora ...