#421 Div1 C
#421 Div1 C
题意
在 (0, n) 和 (m, 0) 处各有一个装置,从起始点(0, 0)出发,首先走短路到 (m, 0) 拿起装置回到起始点,再去 (0, n) 处拿起装置回到起始点。当 (m, 0) 处的装置被触碰后,对于后面所有时刻,如果存在某一时刻有一点 (x, y) 和其余两个装置的位置三点组成的三角形面积为s,则计数加1,求最终计数。
分析
- 对于状态 1,即从 \((m, 0)\) 移动到 \((0, 0)\) 的过程,设在 x 轴上移动的坐标为 \((k, 0)\) ,设任意点坐标 \((x, y)\) ,则有 \(((0, n) - (k, 0)) \times ((x, y) - (k, 0)) = 2 * s\) ,作向量叉乘运算。有\(|k*y + n*x - n*k| = 2*s\),如果要求 (x, y) 有整数解,则要求 \(gcd(k, n)|2*s (1 \leq k \leq m)\),对 \(n, k, 2*s\) 分解质因子,设质因子的个数分别为 \(ni, ki, si\) ,如果要满足条件,则对于所有质因子有 \(min(ni, ki) \leq si\),如果 \(ni \leq si\),则 \(ki\) 没有限制,如果 \(ni > si\),则 \(ki \leq si\),可以直接考虑 \(ni > si, ki = si + 1\) 的情况,只要是\(p^{si+1}\)的倍数都是不符合条件,而剩下的都是符合条件的。可以用容斥原理去求。
- 对于状态 2,第一个装置已经在原点\((0, 0)\)了,而第二个装置的位置为\((0, k)\),设任意点坐标 \((x, y)\),向量叉乘运算,有 \((0, k)\times(x, y) = 2*s\),即\(|k*x|=2*s\),对于 \(1 \leq k \leq n\),求 \(k\) 为 \(2*s\) 因子的个数,找到\(2*s\)的素因子及个数,利用 DFS 求解。
code
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 1e6 + 5;
ll a[3]; // n m s
ll ans;
int isp[MAXN];
vector<int> prime;
struct factor {
ll x, cnt;
};
vector<factor> fac;
vector<ll> num;
void init() { // 素数筛
memset(isp, 0, sizeof isp);
for(int i = 2; i < MAXN; i++) {
if(!isp[i]) {
prime.push_back(i);
for(ll j = 1LL * i * i; j < (ll)MAXN; j += i) {
isp[j] = 1;
}
}
}
}
vector<factor> getfac(ll x) { // 筛选出质因子及其个数
vector<factor> vec;
for(int i = 0; (ll)prime[i] * prime[i] <= x; i++) {
int c = 0;
while(x % prime[i] == 0) {
c++;
x /= prime[i];
}
if(c) {
vec.push_back(factor{prime[i], c});
}
}
if(x > 1) {
vec.push_back(factor{x, 1});
}
return vec;
}
void dfs1(int pos, ll val, int cnt) { // 容斥
if(pos >= (int)num.size()) {
if(cnt & 1) ans -= a[1] / val;
else ans += a[1] / val;
return;
}
dfs1(pos + 1, val * num[pos], cnt ^ 1);
dfs1(pos + 1, val, cnt);
}
void solve1() { // 状态 1
num.clear();
fac.clear();
fac = getfac(a[0]);
for(int i = 0; i < (int)fac.size(); i++) {
ll sum = 1;
for(int j = 0; j < fac[i].cnt; j++) {
sum *= fac[i].x;
if(a[2] % sum != 0) {
num.push_back(sum);
break;
}
}
}
dfs1(0, 1, 0);
}
void dfs2(int pos, ll val) {
if(pos >= (int)fac.size()) {
ans += (val <= a[0]);
return;
}
ll sum = 1;
for(int i = 0; i <= fac[pos].cnt; i++) {
dfs2(pos + 1, val * sum);
sum *= fac[pos].x;
}
}
void solve2() { // 状态 2
fac.clear();
fac = getfac(a[2]);
dfs2(0, 1);
}
int main() {
int T;
init();
cin >> T;
while(T--) {
ans = 0;
for(int i = 0; i < 3; i++) {
a[i] = 1LL;
for(int j = 0; j < 3; j++) {
ll x;
cin >> x;
a[i] *= x;
}
}
a[2] *= 2;
solve1();
solve2();
cout << ans << endl;
}
return 0;
}
#421 Div1 C的更多相关文章
- CF#345 (Div1)
论蒟蒻如何被cf虐 以下是身败名裂后的题解菌=========== Div1 A.Watchmen 有n个点,每个点有一个坐标.求曼哈顿距离=欧几里得距离的点对数量. 只需要统计x或y一样的点对数量. ...
- 图论 SRM 674 Div1 VampireTree 250
Problem Statement You are a genealogist specializing in family trees of vampires. Vampire famil ...
- jq对象转为dom对象:$(".div1")[0] dom对象转为jq对象:$(dom对象)
<!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title>& ...
- 第一次div1做出3道题
第一次div1做出3道题! 再接再厉! 哈利路亚!
- 第一次进div1了
第一次进div1~好激动啊! 上帝依旧那么眷顾我!
- TopCoder 649 div1 & div2
最近一场TC,做得是在是烂,不过最后challenge阶段用一个随机数据cha了一个明显错误的代码,最后免于暴跌rating,还涨了一点.TC题目质量还是很高的,非常锻炼思维,拓展做题的视野,老老实实 ...
- SRM DIV1 500pt DP
SRM 501 DIV1 500pt SRM 502 DIV1 500pt SRM 508 DIV1 500pt SRM 509 DIV1 500pt SRM 511 DIV1 500pt SRM 5 ...
- codeforces #305 div1 done
总算搞定了这一场比赛的题目,感觉收获蛮大 其中A,B,C都能通过自己的思考解决掉 D题思路好神,E题仔细想想也能想出来 以后坚持每两天或者一天做一场CF的div1的全套题目 除非有实在无法做出来的题目 ...
- [Codeforces Round #254 div1] C.DZY Loves Colors 【线段树】
题目链接:CF Round #254 div1 C 题目分析 这道题目是要实现区间赋值的操作,同时还要根据区间中原先的值修改区间上的属性权值. 如果直接使用普通的线段树区间赋值的方法,当一个节点表示的 ...
随机推荐
- pytest 运行指定用例
pytest运行指定用例 随着软件功能的增加,模块越来越多,也意味用例越来越多,为了节约执行时间,快速得到测试报告与结果,在工作中可以通过运行指定用例,达到快速执行用例 例子目录 spec_sub1_ ...
- Python学习5,三级菜单实例
_author_ = "Happyboy" data = { '北京':{ "昌平":{ "沙河":["Happyboy" ...
- 项目中DataTables分页插件的使用
在项目开发的过程中,一般都会对表格进行分页处理,大多是情况下会在项目中配置好后台分页插件,提高效率,减轻浏览器的压力.但是有时会遇到有些数据不能直接通过分页插件操作数据库进行分页数据查询,那就需要用到 ...
- hnust 档案管理
问题 E: 档案管理 时间限制: 1 Sec 内存限制: 128 MB提交: 274 解决: 105[提交][状态][讨论版] 题目描述 X老师管理着学校的档案室,经常会有其他的老师来档案室存文件 ...
- CentOS7 编译安装nodejs,配置环境变量记录
每次都装,每次都查 阿里云备案了一个域名,续费了好多年,但是没钱买服务器,就挂在github上.今天收到消息:域名解析服务器不在阿里云,要被GG.只能咬牙买了个阿里云乞丐版. 所有服务都装好了,pin ...
- 【bzoj4636】蒟蒻的数列 离散化+线段树
原文地址:http://www.cnblogs.com/GXZlegend/p/6801379.html 题目描述 蒟蒻DCrusher不仅喜欢玩扑克,还喜欢研究数列 题目描述 DCrusher有一个 ...
- vue-router中scrollBehavior的巧妙用法
问题:使用keep-alive标签后部分安卓机返回缓存页位置不精确问题 解决方案: <div id="app"> <keep-alive> <rout ...
- Delivering Goods UVALive - 7986(最短路+最小路径覆盖)
Delivering Goods UVALive - 7986(最短路+最小路径覆盖) 题意: 给一张n个点m条边的有向带权图,给出C个关键点,问沿着最短路径走,从0最少需要出发多少次才能能覆盖这些关 ...
- Linux下find命令参数及用法详解
由于find具有强大的功能,所以它的选项也很多,其中大部分选项都值得我们花时间来了解一下.即使系统中含有网络文件系统( NFS),find命令在该文件系统中同样有效,只你具有相应的权限.在运行一个非常 ...
- 使用vim进行java编程
首先:编写源代码Test.java 1class Test{ ...