Spark Streaming通过将流数据按指定时间片累积为RDD,然后将每个RDD进行批处理,进而实现大规模的流数据处理。其吞吐量能够超越现有主流流处理框架Storm,并提供丰富的API用于流数据计算。

  Spark Streaming 是一个批处理的流式计算框架。它的核心执行引擎是 Spark,适合处理实时数据与历史数据混合处理的场景,并保证容错性。
  Spark Streaming 是构建在 Spark 上的实时计算框架,扩展了 Spark 流式大数据处理能力。 Spark Streaming 将数据流以时间片为单位进行分割形成 RDD,使用 RDD 操作处理每一块数据,每块数据(也就是 RDD)都会生成一个 Spark Job 进行处理,最终以批处理的方式处理每个时间片的数据。请参照下图1。
  

              图 1   Spark Streaming 生成 Job

  Spark Streaming 编程接口和 Spark 很相似。在 Spark 中,通过在 RDD 上用 Transformation(例如: map, f ilter 等)和 Action(例如: count, collect 等)算子进行运算。在 Spark Streaming中通过在 DStream(表示数据流的 RDD 序列)上进行算子运算。图 2 为 Spark Streaming 转化过程。
  

                      图2  Spark Streaming 转化过程

  注:DStream是实时计算模型。

  图 2 中 Spark Streaming 将程序中对 DStream 的操作转换为 DStream DAG。对每个时间片, DStream DAG 会产生一个 RDD DAG。在 RDD 中通过 Action
算 子 触 发 一 个 Job, 然 后 Spark Streaming 会 将 Job 提 交 给 JobManager。 JobManager会将 Job 插入维护的 Job 队列,然后 JobManager 会将队列中的 Job 逐个提交给 Spark
DAGScheduler,然后 Spark 会调度 Job 并将 Task 分发到各节点的 Executor 上执行。

Apache Spark Streaming的简介的更多相关文章

  1. Apache Spark Streaming的优点

    Apache Spark Streaming的优点: (1)优势及特点 1)多范式数据分析管道:能和 Spark 生态系统其他组件融合,实现交互查询和机器学习等多范式组合处理. 2)扩展性:可以运行在 ...

  2. Offset Management For Apache Kafka With Apache Spark Streaming

    An ingest pattern that we commonly see being adopted at Cloudera customers is Apache Spark Streaming ...

  3. Apache Spark Streaming的适用场景

    使用场景: Spark Streaming 适合需要历史数据和实时数据结合进行分析的应用场景,对于实时性要求不是特别高的场景也能够胜任.

  4. Apache Spark Shark的简介

    Shark是构建在Spark和Hive基础之上的数据仓库. 目前,Shark已经完成学术使命,终止开发,但其架构和原理仍具有借鉴意义. 它提供了能够查询Hive中所存储数据的一套SQL接口,兼容现有的 ...

  5. Apache Spark MLlib的简介

    MLlib 是构建在 Spark 上的分布式机器学习库,充分利用了 Spark 的内存计算和适合迭代型计算的优势,将性能大幅度提升.同时由于 Spark 算子丰富的表现力, 让大规模机器学习的算法开发 ...

  6. Apache Spark GraphX的简介

    简单地说,GraphX是大规模图计算框架. GraphX 是 Spark 中的一个重要子项目,它利用 Spark 作为计算引擎,实现了大规模图计算的功能,并提供了类似 Pregel 的编程接口. Gr ...

  7. Apache Spark Tachyon的简介

    Tachyon是一个分布式内存文件系统,可以理解为内存中的HDFS. 为了提供更高的性能,将数据存储剥离Java Heap. 用户可以基于Tachyon实现RDD或者文件的跨应用共享,并提供高容错机制 ...

  8. Apache Spark 2.2.0 中文文档 - Spark Streaming 编程指南 | ApacheCN

    Spark Streaming 编程指南 概述 一个入门示例 基础概念 依赖 初始化 StreamingContext Discretized Streams (DStreams)(离散化流) Inp ...

  9. Real Time Credit Card Fraud Detection with Apache Spark and Event Streaming

    https://mapr.com/blog/real-time-credit-card-fraud-detection-apache-spark-and-event-streaming/ Editor ...

随机推荐

  1. Mysql:常用代码

    C/S: Client Server B/S: Brower Server Php主要实现B/S .net IIS Jave TomCat LAMP:L Mysql:常用代码 Create table ...

  2. JNI读取assets资源文件

    源自:http://www.rosoo.net/a/201112/15459.html assets目录底下的文件会被打包到一个apk文件里,这些资源在安装时他们并没被解压,使用时是直接从apk中读取 ...

  3. Oracle 数据集成的实际解决方案

    就针对市场与企业的发展的需求,Oracle公司提供了一个相对统一的关于企业级的实时数据解决方案,即Oracle数据集成的解决方案.以下的文章主要是对其解决方案的具体描述,望你会有所收获. Oracle ...

  4. 前端SPA框架一些看法

    说起前端框架,我个人主张有框架不如无框架,这个观点要先从框架和库的区别说起. 我所理解的库,解决的是代码或是模块级别的复用或者对复杂度的封装问题;而框架,更多的是对模式级别的复用和对程序组织的规范,这 ...

  5. codevs 3290 华容道

    HAHAHA BFS+SPFA. #include<iostream> #include<cstdio> #include<cstring> #include< ...

  6. 【C#学习笔记】鼠标控制

    using System; using System.Runtime.InteropServices; using System.Windows.Forms; namespace ConsoleApp ...

  7. LintCode: isSubTree

    Title: 有两个不同大小的二进制树: T1 有上百万的节点: T2 有好几百的节点.请设计一种算法,判定 T2 是否为 T1的子树 class Solution { public: /** * @ ...

  8. 使用mp4v2将H264+AAC合成mp4文件

    录制程序要添加新功能:录制CMMB电视节目,我们的板卡发送出来的是RTP流(H264视频和AAC音频),录制程序要做的工作是: (1)接收并解析RTP包,分离出H264和AAC数据流: (2)将H26 ...

  9. js获取客户端IP及地理位置

    php获取方法: 1.<?php 2.function get_ip_place(){ 3.$ip=file_get_contents("http://fw.qq.com/ipaddr ...

  10. 图片的android:src 及android:background共存

    ---恢复内容开始--- 需求:给ImageView添加背景色 效果: 实现分析: 1.目录结构: 代码实现: 1.activity_main.xml <merge xmlns:android= ...