hdu 1452 Happy 2004
因子和:
6的因子是1,2,3,6; 6的因子和是 s(6)=1+2+3+6=12;
20的因子是1,2,4,5,10,20; 20的因子和是 s(20)=1+2+4+5+10+20=42;
2的因子是1,2; 2的因子和是 s(2)=1+2=3;
3的因子是1,3; 3的因子和是 s(3)=1+3=4;
4的因子和是 s(4)=1+2+4=7;
5的因子和是 s(5)=1+5=6;
s(6)=s(2)*s(3)=3*4=12;
s(20)=s(4)*s(5)=7*6=42;
这是巧合吗?
再看 s(50)= 1+2+5+10+25+50=93=3*31=s(2)*s(25),s(25)=1+5+25=31.
这在数论中叫积性函数,当gcd(a,b)=1时 s(a*b)=s(a)*s(b);
如果p是素数
s(p^n)=1+p+p^2+...+p^n= (p^(n+1)-1) /(p-1) (1)
例 hdu1452 Happy 2004
计算 因子和 s(2004^X) mod 29 ,
2004=2^2 *3 *167
s(2004^X) ) = (s(2^2X))) * (s(3^X))) * (s(167^X)))
167)=22;
s(2004^X) ) = (s(2^2X))) * (s(3^X))) * (s(22^X)))
a=s(2^2X)=(2^(2X+1)-1) //根据 (1)
b=s(3^X)= (3^(X+1)-1)/2 //根据 (1)
c=s(22^X)= (22^(X+1)-1)/21 //根据 (1)
%运算法则 1. (a*b) %p= ( a%p) *(b%p)
%运算法则 2. (a/b) %p= ( a *b^(-1)%p)
b^(-1)是 b的逆元素 (%p)
2的逆元素是15 ()) ,因为2*15=30 % 29=1 % 29
21的逆元素是18 ()) ,因为21*18=378% 29 =1 % 29
因此
a=(powi(2,2*x+1,29)-1)% 29;
b=(powi(3,x+1,29)-1)*15 % 29;
c=(powi(22,x+1,29)-1)*18 % 29;
ans=(a*b)% 29*c % 29;
/*************************************************************************
> File Name: xh.cpp
> Author: XINHUA
> Mail: 525799145@qq.com
> Created Time: 2013/7/22 星期一 19:54:04 新华
************************************************************************/ #include<iostream>
#include<stdio.h>
#include<algorithm>
#include<iomanip>
#include<cmath>
#include<string>
#include<vector>
#define ll __int64
using namespace std;
int pows(int a,int b)
{
int ans=;
while(b)
{
if(b&) ans=ans*a%;
b>>=;
a=a*a%;
}
return ans%;
}
int main()
{
int n;
while(cin>>n&&n)
{
int a=(pows(,*n+)-)%;
int b=(pows(,n+)-)*%;
int c=(pows(,n+)-)*%;
printf("%d\n",(((a*b)%)*c)%);
}
return ;
}
hdu 1452 Happy 2004的更多相关文章
- HDU 1452 Happy 2004 (逆元+快速幂+积性函数)
G - Happy 2004 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Subm ...
- hdu 1452 Happy 2004 膜拜这推导过程
Happy 2004 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- HDU 1452 Happy 2004(因子和的积性函数)
题目链接 题意 : 给你一个X,让你求出2004的X次方的所有因子之和,然后对29取余. 思路 : 原来这就是积性函数,点这里这里这里,这里讲得很详细. 在非数论的领域,积性函数指所有对于任何a,b都 ...
- Hdu 1452 Happy 2004(除数和函数,快速幂乘(模),乘法逆元)
Problem Description Considera positive integer X,and let S be the sum of all positive integer diviso ...
- HDU 1452 Happy 2004(因数和+费马小定理+积性函数)
Happy 2004 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total ...
- HDU 1452 Happy 2004(唯一分解定理)
题目链接:传送门 题意: 求2004^x的全部约数的和. 分析: 由唯一分解定理可知 x=p1^a1*p2^a2*...*pn^an 那么其约数和 sum = (p1^0+p1^1^-+p1^a1)* ...
- 数学--数论--Hdu 1452 Happy 2004(积性函数性质+和函数公式+快速模幂+乘法逆元)
Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your ...
- HDU 1452 欧拉定理
让你求$2004^x$所有因子之和,因子之和函数是积性函数$\sigma(n)=\sum_{d|n}d=\prod_{i=0}^{m}(\sum_{j=0}^{k_i}{P_i^{j}})$可用二项式 ...
- hdu 1425 Happy 2004
题目链接 hdu 1425 Happy 2004 题解 题目大意: 求 \[\sum_{d|2004^{x}}d\ mod\ 29\] 记为\(s(2004^x)\) \(sum(2004^{x})= ...
随机推荐
- NFS参数配置详细说明
摘抄自:http://www.linuxidc.com/Linux/2012-05/61527p3.htm 1.NFS概述 NFS:Network file system,网络文件系统: 由sun公司 ...
- header页头内容整理
meta标签 <meta charset="UTF-8"/> <!--视窗宽度--> <meta name="viewport" ...
- 用 Function.apply() 的参数数组化来提高 JavaScript程序性能
我们再来聊聊Function.apply() 在提升程序性能方面的技巧. 我们先从 Math.max() 函数说起, Math.max后面可以接任意个参数,最后返回所有参数中的最大值. 比如 aler ...
- 反编译APK终结教程
现在来教大家如何由网上下载的Android应用反编译为源码.如果你感兴趣,就来看一看吧.前提是你的电脑得已经配置好了java环境,如果没有配置好的话,下面我会附带一提,如果你还是不懂的话,那就上网搜一 ...
- RTC搭建android下三层应用程序访问服务器MsSql-客户端
android下stringgrid已知问题: 通过点击时获取对应行的值有问题,在win下调试正常,在android下出现定位不准 二.客户端开发 1,新建工程 2,添加相关客户端控件TRtcHttp ...
- ORACLE 11G R2 修改"用户名"
SQL> create pfile from spfile; 修改pfile文件,添加隐含参数 *._enable_rename_user='TRUE',将数据库以restrict方式启动 1. ...
- Unity 优化
1. 尽量避免每帧处理比如: function Update() { DoSomeThing(); } 可改为每5帧处理一次: function Update() { == ) { DoSomeThi ...
- Entity Framework(一) 映射
ADO.NET Entity Framework通过Modeel First和DataBase First,提供了几个把数据库表映射到对象上的曾.通过Database First,可以从一个数据库架构 ...
- JPA学习---第六节:大数据字段映射与字段延迟加载
1.大数据字段所需的注解 @Lob ,例如: @Lobprivate String info; 在mysql中映射产生的字段的类型是longtext:在oracle中是 CLOB @Lobpriva ...
- 怎么直接在MySQL客户端上执行SQl文件?
\. 直接把sql文件拖进去就行了,(斜杠+.+空格+sql文件)