题目:

There are a total of n courses you have to take, labeled from 0 to n - 1.

Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]

Given the total number of courses and a list of prerequisite pairs, return the ordering of courses you should take to finish all courses.

There may be multiple correct orders, you just need to return one of them. If it is impossible to finish all courses, return an empty array.

For example:

2, [[1,0]]

There are a total of 2 courses to take. To take course 1 you should have finished course 0. So the correct course order is [0,1]

4, [[1,0],[2,0],[3,1],[3,2]]

There are a total of 4 courses to take. To take course 3 you should have finished both courses 1 and 2. Both courses 1 and 2 should be taken after you finished course 0. So one correct course order is [0,1,2,3]. Another correct ordering is[0,2,1,3].

Note:
The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.

click to show more hints.

Hints:
    1. This problem is equivalent to finding the topological order in a directed graph. If a cycle exists, no topological ordering exists and therefore it will be impossible to take all courses.
    2. Topological Sort via DFS - A great video tutorial (21 minutes) on Coursera explaining the basic concepts of Topological Sort.
    3. Topological sort could also be done via BFS.

链接: http://leetcode.com/problems/course-schedule-ii/

题解:

跟Course Schedule一样,这次是求出拓扑排序后的顺序。我们依然是用Kahn's Algorithm和Tarjan's Algorithm。

Kahn's Algorithm: 需要注意输出的先后顺序,edge [0,1]表示假如要take 0,必须先take 1,那么edge[0]也就是0其实inDegree = 1,而edge[1]也就是1的indegree = 0。这个edge等价于"1 -> 0"。

public class Solution {
public int[] findOrder(int numCourses, int[][] prerequisites) { // Kahn's Algorithms
if(numCourses <= 0)
return new int[]{};
int[] res = new int[numCourses];
for(int i = 0; i < numCourses; i++)
res[i] = i; if(prerequisites == null || prerequisites.length == 0)
return res; int[] inDegree = new int[numCourses];
for(int[] edge : prerequisites)
inDegree[edge[0]]++; Queue<Integer> queue = new LinkedList<>();
for(int i = 0; i < numCourses; i++) // calculate inDegree
if(inDegree[i] == 0)
queue.offer(i); int index = 0;
while(!queue.isEmpty()) {
int source = queue.poll();
res[index++] = source; // reverse post order
for(int[] edge : prerequisites) {
if(edge[1] == source) {
inDegree[edge[0]]--;
if(inDegree[edge[0]] == 0)
queue.offer(edge[0]);
}
}
} if(index == numCourses) { //looped through all vertex
return res;
} else
return new int[]{}; // has cycle, not DAG
}
}

Tarjan's Algorithm:  也是使用跟Course Schedule I的方法,注意要有一个stack保存reverse post顺序。虽然能ac,但是速度很慢, 二刷要注意复杂度的问题,以及图的表示,从list of edges到Ajacency Matrix和Ajacency List的互相转换。以及Sparse Matrix如何优化等等。

Time Complexity - O(VE),Space Complexity - O(V)。

public class Solution {
private boolean[] marked; // mark visited vertex
private boolean[] onStack; // mark temp visited vertex for dfs
private Stack<Integer> reversePost; // store topological ordering vertex
private boolean result = true; public int[] findOrder(int numCourses, int[][] prerequisites) {
int[] res = new int[numCourses];
for(int i = 0; i < numCourses; i++)
res[i] = i;
if(prerequisites == null || prerequisites.length == 0)
return res;
this.marked = new boolean[numCourses];
this.onStack = new boolean[numCourses];
this.reversePost = new Stack<>(); for(int v = 0; v < numCourses; v++) {
if(!this.result) // if found cycle
return new int[]{};
if(!marked[v])
dfs(v, prerequisites);
} int index = 0;
while(!reversePost.isEmpty()) {
res[index++] = reversePost.pop();
} return res; } private void dfs(int v, int[][] prerequisites) {
onStack[v] = true; // temporarily mark this vertex = true on this dfs route
marked[v] = true; // permanently mark this vertex visited
for(int[] edge : prerequisites) {
if(edge[1] == v) {
if(!marked[edge[0]])
dfs(edge[0], prerequisites);
else {
if(onStack[edge[0]])
this.result = false;
}
}
} onStack[v] = false; // back-tracking
reversePost.push(v); // push vertex to reversePost stack
}
}

二刷:

和 207题一样, 以后要注意转为 Adjacency Lists表示方法进行计算。

Java:

Kahn's Method

public class Solution {
public int[] findOrder(int numCourses, int[][] prerequisites) {
if (numCourses <= 0 || prerequisites == null) return new int[] {};
int[] inDegree = new int[numCourses];
for (int[] prerequisite : prerequisites) inDegree[prerequisite[0]]++; Queue<Integer> q = new LinkedList<>();
for (int i = 0; i < numCourses; i++) {
if (inDegree[i] == 0) q.offer(i);
}
int[] res = new int[numCourses];
int index = 0;
while (!q.isEmpty()) {
int num = q.poll();
res[index++] = num;
for (int[] prerequisite : prerequisites) {
if (prerequisite[1] == num) {
inDegree[prerequisite[0]]--;
if (inDegree[prerequisite[0]] == 0) {
q.offer(prerequisite[0]);
}
}
}
}
return index == numCourses ? res : new int[] {};
}
}

Tarjan's method:

速度非常慢,下次再优化

public class Solution {
public int[] findOrder(int numCourses, int[][] prerequisites) {
if (numCourses <= 0 || prerequisites == null) return new int[] {};
boolean[] visited = new boolean[numCourses];
boolean[] onVisiting = new boolean[numCourses];
Stack<Integer> stack = new Stack<>();
for (int i = 0; i < numCourses; i++) {
if (!dfs(i, prerequisites, visited, onVisiting, stack)) return new int[] {};
}
int[] res = new int[numCourses];
for (int i = numCourses - 1; i >= 0; i--) res[i] = stack.pop(); return res;
} private boolean dfs(int i, int[][] prerequisites, boolean[] visited, boolean[] onVisiting, Stack<Integer> stack) {
if (visited[i]) return true;
visited[i] = true;
onVisiting[i] = true; for (int[] prerequisite : prerequisites) {
if (prerequisite[0] == i) {
if (onVisiting[prerequisite[1]]) return false;
if (!dfs(prerequisite[1], prerequisites, visited, onVisiting, stack)) return false;
}
} onVisiting[i] = false;
stack.push(i);
return true;
}
}

优化后:

Kahn's Method - BFS using Graph as Adjacency Lists

Time Complexity - O(V + E),Space Complexity - O(V)。

public class Solution {
public int[] findOrder(int numCourses, int[][] prerequisites) {
if (numCourses <= 0 || prerequisites == null) return new int[] {};
int[] inDegree = new int[numCourses];
List<List<Integer>> graph = new ArrayList<>(); for (int i = 0; i < numCourses; i++) graph.add(new ArrayList<Integer>());
for (int i = 0; i < prerequisites.length; i++) {
inDegree[prerequisites[i][0]]++;
graph.get(prerequisites[i][1]).add(prerequisites[i][0]);
} Queue<Integer> q = new LinkedList<>();
for (int i = 0; i < numCourses; i++) {
if (inDegree[i] == 0) q.offer(i);
}
int[] res = new int[numCourses];
int index = 0;
while (!q.isEmpty()) {
int num = q.poll();
res[index++] = num;
for (int i : graph.get(num)) {
inDegree[i]--;
if (inDegree[i] == 0) {
q.offer(i);
}
}
}
return index == numCourses ? res : new int[] {};
}
}

Tarjan's Method - BFS using Graph as Adjacency Lists

Time Complexity - O(V + E),Space Complexity - O(V)。

public class Solution {
public int[] findOrder(int numCourses, int[][] prerequisites) {
if (numCourses <= 0 || prerequisites == null) return new int[] {};
List<List<Integer>> graph = new ArrayList<>();
for (int i = 0; i < numCourses; i++) graph.add(new ArrayList<Integer>());
for (int i = 0; i < prerequisites.length; i++) graph.get(prerequisites[i][1]).add(prerequisites[i][0]); boolean[] visited = new boolean[numCourses];
boolean[] onVisiting = new boolean[numCourses];
Stack<Integer> stack = new Stack<>(); for (int i = 0; i < numCourses; i++) {
if (!dfs(i, graph, visited, onVisiting, stack)) return new int[] {};
} int[] res = new int[numCourses];
for (int i = 0; i < numCourses; i++) res[i] = stack.pop();
return res;
} private boolean dfs(int num, List<List<Integer>> graph, boolean[] visited, boolean[] onVisiting, Stack<Integer> stack) {
if (visited[num]) return true;
visited[num] = true;
onVisiting[num] = true;
for (int i : graph.get(num)) {
if (onVisiting[i]) return false;
if (!dfs(i, graph, visited, onVisiting, stack)) return false;
}
onVisiting[num] = false;
stack.push(num);
return true;
}
}

三刷:

Java:

BFS:

public class Solution {
public int[] findOrder(int numCourses, int[][] prerequisites) {
if (numCourses < 0 || prerequisites == null) return new int[] {};
List<List<Integer>> adjListsGraph = new ArrayList<>();
for (int i = 0; i < numCourses; i++) adjListsGraph.add(new ArrayList<>());
int[] inDegrees = new int[numCourses]; for (int[] prerequisite : prerequisites) {
adjListsGraph.get(prerequisite[1]).add(prerequisite[0]);
inDegrees[prerequisite[0]]++;
} Queue<Integer> q = new LinkedList<>();
for (int i = 0; i < numCourses; i++) {
if (inDegrees[i] == 0) q.offer(i);
} int[] res = new int[numCourses];
int idx = 0;
while (!q.isEmpty()) {
int course = q.poll();
res[idx++] = course;
for (int dependent : adjListsGraph.get(course)) {
inDegrees[dependent]--;
if (inDegrees[dependent] == 0) q.offer(dependent);
}
}
return (idx == numCourses) ? res : new int[] {};
}
}

DFS:

public class Solution {
public int[] findOrder(int numCourses, int[][] prerequisites) {
if (numCourses < 0 || prerequisites == null) return new int[] {};
List<List<Integer>> adjListsGraph = new ArrayList<>();
for (int i = 0; i < numCourses; i++) adjListsGraph.add(new ArrayList<>());
for (int[] prerequisite : prerequisites) adjListsGraph.get(prerequisite[1]).add(prerequisite[0]);
boolean[] visited = new boolean[numCourses];
boolean[] onVisitingPath = new boolean[numCourses];
Stack<Integer> stack = new Stack<>(); for (int i = 0; i < numCourses; i++) {
if (!visited[i] && !canFindOrder(i, adjListsGraph, visited, onVisitingPath, stack)) return new int[] {};
} int[] res = new int[numCourses];
for (int i = 0; i < numCourses; i++) res[i] = stack.pop();
return res;
} private boolean canFindOrder(int course, List<List<Integer>> adjListsGraph, boolean[] visited, boolean[] onVisitingPath, Stack<Integer> stack) {
if (visited[course]) return true;
onVisitingPath[course] = true;
for (int dependent : adjListsGraph.get(course)) {
if (onVisitingPath[dependent] || !canFindOrder(dependent, adjListsGraph, visited, onVisitingPath, stack)) {
return false;
}
}
onVisitingPath[course] = false;
visited[course] = true;
stack.push(course);
return true;
}
}

Reference:

http://algs4.cs.princeton.edu/42digraph/

207. Course Schedule

210. Course Schedule II的更多相关文章

  1. 【LeetCode】210. Course Schedule II

    Course Schedule II There are a total of n courses you have to take, labeled from 0 to n - 1. Some co ...

  2. 【刷题-LeetCode】210. Course Schedule II

    Course Schedule II There are a total of n courses you have to take, labeled from 0 to n-1. Some cour ...

  3. [LeetCode] 210. Course Schedule II 课程清单之二

    There are a total of n courses you have to take, labeled from 0 to n-1. Some courses may have prereq ...

  4. Java for LeetCode 210 Course Schedule II

    There are a total of n courses you have to take, labeled from 0 to n - 1. Some courses may have prer ...

  5. Leetcode 210 Course Schedule II

    here are a total of n courses you have to take, labeled from 0 to n - 1. Some courses may have prere ...

  6. LeetCode 210. Course Schedule II(拓扑排序-求有向图中是否存在环)

    和LeetCode 207. Course Schedule(拓扑排序-求有向图中是否存在环)类似. 注意到.在for (auto p: prerequistites)中特判了输入中可能出现的平行边或 ...

  7. [LeetCode] 210. Course Schedule II 课程安排II

    There are a total of n courses you have to take, labeled from 0 to n - 1. Some courses may have prer ...

  8. 【LeetCode】210. Course Schedule II 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 拓扑排序,BFS 拓扑排序,DFS 参考资料 日期 ...

  9. (medium)LeetCode 210.Course Schedule II

    There are a total of n courses you have to take, labeled from 0 to n - 1. Some courses may have prer ...

随机推荐

  1. [GeekBand] C++11~14

    一.关键字decltype 由对象得到对象的数据类型,例如 Complex  a(1,  2);     decltype(a)  b(3,  4);     declare type是让编译器去找到 ...

  2. 如何管好.net的内存(托管堆和垃圾回收)

    一:C#标准Dispose模式的实现 需要明确一下C#程序(或者说.NET)中的资源.简单的说来,C#中的每一个类型都代表一种资源,而资源又分为两类: 托管资源:由CLR管理分配和释放的资源,即由CL ...

  3. 如何在PowerDesigner将PDM导出生成WORD文档或者html文件

    a)         使用PowerDesigner打开pdm文件 b)         点击Report Temlates 制作模板 点击PowerDesigner菜单栏“Report” -> ...

  4. UserControl eventhander 注册问题

    1. 如果主页面调用UserControl来画界面 2. UserControl局部变化需要通过事件通知主页面,通过UserControl定义EventHandler,主界面注册UserControl ...

  5. MongoDB的安全性

    上篇文章介绍Mongo启动了,一般数据库启动,下面的操作就是登录数据库了,之前测试数据库是否正常安装的时候也登录过数据库,现在回想一下,好像连用户名和密码都没有输入,找几篇帖子来探究下Mongodb的 ...

  6. mac下安装pcntl

     Now you need to find out what version of PHP is installed on OSX $ php -vPHP 5.3.10 with Suhosin-Pa ...

  7. 使用 JSONP 实现跨域通信

    简介 Asynchronous JavaScript and XML (Ajax) 是驱动新一代 Web 站点(流行术语为 Web 2.0 站点)的关键技术.Ajax 允许在不干扰 Web 应用程序的 ...

  8. Node.Js之【Stream 之复制文件问题】

    var fs = require('fs'), path = require('path'), out = process.stdout; var filePath = 'F:/IMG_0221.MO ...

  9. 代码动态创建checkbox

    根据数据库的内容动态创建Checkbox控件并显示在Panel上 dataset ds=new dataset(); CheckBox[ ] cb=new CheckBox[ds.tables[0]. ...

  10. 从零学起PHP

    数据库连接conn.php <?php //第一步:链接数据库 $conn=@mysql_connect("localhost:3306","root", ...