210. Course Schedule II
题目:
There are a total of n courses you have to take, labeled from 0 to n - 1.
Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]
Given the total number of courses and a list of prerequisite pairs, return the ordering of courses you should take to finish all courses.
There may be multiple correct orders, you just need to return one of them. If it is impossible to finish all courses, return an empty array.
For example:
2, [[1,0]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0. So the correct course order is [0,1]
4, [[1,0],[2,0],[3,1],[3,2]]
There are a total of 4 courses to take. To take course 3 you should have finished both courses 1 and 2. Both courses 1 and 2 should be taken after you finished course 0. So one correct course order is [0,1,2,3]. Another correct ordering is[0,2,1,3].
Note:
The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
- This problem is equivalent to finding the topological order in a directed graph. If a cycle exists, no topological ordering exists and therefore it will be impossible to take all courses.
- Topological Sort via DFS - A great video tutorial (21 minutes) on Coursera explaining the basic concepts of Topological Sort.
- Topological sort could also be done via BFS.
链接: http://leetcode.com/problems/course-schedule-ii/
题解:
跟Course Schedule一样,这次是求出拓扑排序后的顺序。我们依然是用Kahn's Algorithm和Tarjan's Algorithm。
Kahn's Algorithm: 需要注意输出的先后顺序,edge [0,1]表示假如要take 0,必须先take 1,那么edge[0]也就是0其实inDegree = 1,而edge[1]也就是1的indegree = 0。这个edge等价于"1 -> 0"。
public class Solution {
public int[] findOrder(int numCourses, int[][] prerequisites) { // Kahn's Algorithms
if(numCourses <= 0)
return new int[]{};
int[] res = new int[numCourses];
for(int i = 0; i < numCourses; i++)
res[i] = i;
if(prerequisites == null || prerequisites.length == 0)
return res;
int[] inDegree = new int[numCourses];
for(int[] edge : prerequisites)
inDegree[edge[0]]++;
Queue<Integer> queue = new LinkedList<>();
for(int i = 0; i < numCourses; i++) // calculate inDegree
if(inDegree[i] == 0)
queue.offer(i);
int index = 0;
while(!queue.isEmpty()) {
int source = queue.poll();
res[index++] = source; // reverse post order
for(int[] edge : prerequisites) {
if(edge[1] == source) {
inDegree[edge[0]]--;
if(inDegree[edge[0]] == 0)
queue.offer(edge[0]);
}
}
}
if(index == numCourses) { //looped through all vertex
return res;
} else
return new int[]{}; // has cycle, not DAG
}
}
Tarjan's Algorithm: 也是使用跟Course Schedule I的方法,注意要有一个stack保存reverse post顺序。虽然能ac,但是速度很慢, 二刷要注意复杂度的问题,以及图的表示,从list of edges到Ajacency Matrix和Ajacency List的互相转换。以及Sparse Matrix如何优化等等。
Time Complexity - O(VE),Space Complexity - O(V)。
public class Solution {
private boolean[] marked; // mark visited vertex
private boolean[] onStack; // mark temp visited vertex for dfs
private Stack<Integer> reversePost; // store topological ordering vertex
private boolean result = true;
public int[] findOrder(int numCourses, int[][] prerequisites) {
int[] res = new int[numCourses];
for(int i = 0; i < numCourses; i++)
res[i] = i;
if(prerequisites == null || prerequisites.length == 0)
return res;
this.marked = new boolean[numCourses];
this.onStack = new boolean[numCourses];
this.reversePost = new Stack<>();
for(int v = 0; v < numCourses; v++) {
if(!this.result) // if found cycle
return new int[]{};
if(!marked[v])
dfs(v, prerequisites);
}
int index = 0;
while(!reversePost.isEmpty()) {
res[index++] = reversePost.pop();
}
return res;
}
private void dfs(int v, int[][] prerequisites) {
onStack[v] = true; // temporarily mark this vertex = true on this dfs route
marked[v] = true; // permanently mark this vertex visited
for(int[] edge : prerequisites) {
if(edge[1] == v) {
if(!marked[edge[0]])
dfs(edge[0], prerequisites);
else {
if(onStack[edge[0]])
this.result = false;
}
}
}
onStack[v] = false; // back-tracking
reversePost.push(v); // push vertex to reversePost stack
}
}
二刷:
和 207题一样, 以后要注意转为 Adjacency Lists表示方法进行计算。
Java:
Kahn's Method
public class Solution {
public int[] findOrder(int numCourses, int[][] prerequisites) {
if (numCourses <= 0 || prerequisites == null) return new int[] {};
int[] inDegree = new int[numCourses];
for (int[] prerequisite : prerequisites) inDegree[prerequisite[0]]++;
Queue<Integer> q = new LinkedList<>();
for (int i = 0; i < numCourses; i++) {
if (inDegree[i] == 0) q.offer(i);
}
int[] res = new int[numCourses];
int index = 0;
while (!q.isEmpty()) {
int num = q.poll();
res[index++] = num;
for (int[] prerequisite : prerequisites) {
if (prerequisite[1] == num) {
inDegree[prerequisite[0]]--;
if (inDegree[prerequisite[0]] == 0) {
q.offer(prerequisite[0]);
}
}
}
}
return index == numCourses ? res : new int[] {};
}
}
Tarjan's method:
速度非常慢,下次再优化
public class Solution {
public int[] findOrder(int numCourses, int[][] prerequisites) {
if (numCourses <= 0 || prerequisites == null) return new int[] {};
boolean[] visited = new boolean[numCourses];
boolean[] onVisiting = new boolean[numCourses];
Stack<Integer> stack = new Stack<>();
for (int i = 0; i < numCourses; i++) {
if (!dfs(i, prerequisites, visited, onVisiting, stack)) return new int[] {};
}
int[] res = new int[numCourses];
for (int i = numCourses - 1; i >= 0; i--) res[i] = stack.pop();
return res;
}
private boolean dfs(int i, int[][] prerequisites, boolean[] visited, boolean[] onVisiting, Stack<Integer> stack) {
if (visited[i]) return true;
visited[i] = true;
onVisiting[i] = true;
for (int[] prerequisite : prerequisites) {
if (prerequisite[0] == i) {
if (onVisiting[prerequisite[1]]) return false;
if (!dfs(prerequisite[1], prerequisites, visited, onVisiting, stack)) return false;
}
}
onVisiting[i] = false;
stack.push(i);
return true;
}
}
优化后:
Kahn's Method - BFS using Graph as Adjacency Lists
Time Complexity - O(V + E),Space Complexity - O(V)。
public class Solution {
public int[] findOrder(int numCourses, int[][] prerequisites) {
if (numCourses <= 0 || prerequisites == null) return new int[] {};
int[] inDegree = new int[numCourses];
List<List<Integer>> graph = new ArrayList<>();
for (int i = 0; i < numCourses; i++) graph.add(new ArrayList<Integer>());
for (int i = 0; i < prerequisites.length; i++) {
inDegree[prerequisites[i][0]]++;
graph.get(prerequisites[i][1]).add(prerequisites[i][0]);
}
Queue<Integer> q = new LinkedList<>();
for (int i = 0; i < numCourses; i++) {
if (inDegree[i] == 0) q.offer(i);
}
int[] res = new int[numCourses];
int index = 0;
while (!q.isEmpty()) {
int num = q.poll();
res[index++] = num;
for (int i : graph.get(num)) {
inDegree[i]--;
if (inDegree[i] == 0) {
q.offer(i);
}
}
}
return index == numCourses ? res : new int[] {};
}
}
Tarjan's Method - BFS using Graph as Adjacency Lists
Time Complexity - O(V + E),Space Complexity - O(V)。
public class Solution {
public int[] findOrder(int numCourses, int[][] prerequisites) {
if (numCourses <= 0 || prerequisites == null) return new int[] {};
List<List<Integer>> graph = new ArrayList<>();
for (int i = 0; i < numCourses; i++) graph.add(new ArrayList<Integer>());
for (int i = 0; i < prerequisites.length; i++) graph.get(prerequisites[i][1]).add(prerequisites[i][0]);
boolean[] visited = new boolean[numCourses];
boolean[] onVisiting = new boolean[numCourses];
Stack<Integer> stack = new Stack<>();
for (int i = 0; i < numCourses; i++) {
if (!dfs(i, graph, visited, onVisiting, stack)) return new int[] {};
}
int[] res = new int[numCourses];
for (int i = 0; i < numCourses; i++) res[i] = stack.pop();
return res;
}
private boolean dfs(int num, List<List<Integer>> graph, boolean[] visited, boolean[] onVisiting, Stack<Integer> stack) {
if (visited[num]) return true;
visited[num] = true;
onVisiting[num] = true;
for (int i : graph.get(num)) {
if (onVisiting[i]) return false;
if (!dfs(i, graph, visited, onVisiting, stack)) return false;
}
onVisiting[num] = false;
stack.push(num);
return true;
}
}
三刷:
Java:
BFS:
public class Solution {
public int[] findOrder(int numCourses, int[][] prerequisites) {
if (numCourses < 0 || prerequisites == null) return new int[] {};
List<List<Integer>> adjListsGraph = new ArrayList<>();
for (int i = 0; i < numCourses; i++) adjListsGraph.add(new ArrayList<>());
int[] inDegrees = new int[numCourses];
for (int[] prerequisite : prerequisites) {
adjListsGraph.get(prerequisite[1]).add(prerequisite[0]);
inDegrees[prerequisite[0]]++;
}
Queue<Integer> q = new LinkedList<>();
for (int i = 0; i < numCourses; i++) {
if (inDegrees[i] == 0) q.offer(i);
}
int[] res = new int[numCourses];
int idx = 0;
while (!q.isEmpty()) {
int course = q.poll();
res[idx++] = course;
for (int dependent : adjListsGraph.get(course)) {
inDegrees[dependent]--;
if (inDegrees[dependent] == 0) q.offer(dependent);
}
}
return (idx == numCourses) ? res : new int[] {};
}
}
DFS:
public class Solution {
public int[] findOrder(int numCourses, int[][] prerequisites) {
if (numCourses < 0 || prerequisites == null) return new int[] {};
List<List<Integer>> adjListsGraph = new ArrayList<>();
for (int i = 0; i < numCourses; i++) adjListsGraph.add(new ArrayList<>());
for (int[] prerequisite : prerequisites) adjListsGraph.get(prerequisite[1]).add(prerequisite[0]);
boolean[] visited = new boolean[numCourses];
boolean[] onVisitingPath = new boolean[numCourses];
Stack<Integer> stack = new Stack<>();
for (int i = 0; i < numCourses; i++) {
if (!visited[i] && !canFindOrder(i, adjListsGraph, visited, onVisitingPath, stack)) return new int[] {};
}
int[] res = new int[numCourses];
for (int i = 0; i < numCourses; i++) res[i] = stack.pop();
return res;
}
private boolean canFindOrder(int course, List<List<Integer>> adjListsGraph, boolean[] visited, boolean[] onVisitingPath, Stack<Integer> stack) {
if (visited[course]) return true;
onVisitingPath[course] = true;
for (int dependent : adjListsGraph.get(course)) {
if (onVisitingPath[dependent] || !canFindOrder(dependent, adjListsGraph, visited, onVisitingPath, stack)) {
return false;
}
}
onVisitingPath[course] = false;
visited[course] = true;
stack.push(course);
return true;
}
}
Reference:
http://algs4.cs.princeton.edu/42digraph/
210. Course Schedule II的更多相关文章
- 【LeetCode】210. Course Schedule II
Course Schedule II There are a total of n courses you have to take, labeled from 0 to n - 1. Some co ...
- 【刷题-LeetCode】210. Course Schedule II
Course Schedule II There are a total of n courses you have to take, labeled from 0 to n-1. Some cour ...
- [LeetCode] 210. Course Schedule II 课程清单之二
There are a total of n courses you have to take, labeled from 0 to n-1. Some courses may have prereq ...
- Java for LeetCode 210 Course Schedule II
There are a total of n courses you have to take, labeled from 0 to n - 1. Some courses may have prer ...
- Leetcode 210 Course Schedule II
here are a total of n courses you have to take, labeled from 0 to n - 1. Some courses may have prere ...
- LeetCode 210. Course Schedule II(拓扑排序-求有向图中是否存在环)
和LeetCode 207. Course Schedule(拓扑排序-求有向图中是否存在环)类似. 注意到.在for (auto p: prerequistites)中特判了输入中可能出现的平行边或 ...
- [LeetCode] 210. Course Schedule II 课程安排II
There are a total of n courses you have to take, labeled from 0 to n - 1. Some courses may have prer ...
- 【LeetCode】210. Course Schedule II 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 拓扑排序,BFS 拓扑排序,DFS 参考资料 日期 ...
- (medium)LeetCode 210.Course Schedule II
There are a total of n courses you have to take, labeled from 0 to n - 1. Some courses may have prer ...
随机推荐
- Bitmap、CBitmap、HBITMAP以及BITMAP的相互转换
Bitmap.CBitmap.HBITMAP以及BITMAP的相互转换 构建CBitmapCBitmap bmp;bmp.LoadBitmap(ID); 构建HBITMAPHBitmap = (HBI ...
- sbt的安装设置
文章转载自http://my.oschina.net/u/915967/blog/146746 本文主要是windows平台的安装,linux环境操作类似. 首先到http://www.scala-s ...
- Sublime Text 3 入门(插件控制台安装)
下载地址:http://www.sublimetext.com/3 以windows 32位系统为例 直接点击Windows下载: Package Control插件控制台(有这个才可以安装插件) h ...
- maven增量编译
最近由于不清楚maven(2.2.x)增量编译的机制,导致应用出现了一个当时觉得非常诡异的一个问题.先描述一下问题. 背景是应用A有一个公用的base包,版本为1.6.6-SNAPSHOT,应 ...
- 1028. List Sorting (25)
#include <vector> #include <stdio.h> #include <string.h> #include <algorithm> ...
- ubuntu安装kernel3.10.34
参考http://www.linuxidc.com/Linux/2014-03/98818.htm 32位系统安装 wget kernel.ubuntu.com/~kernel-ppa/mainlin ...
- spot 5、ALOS监督分类波段组成
spot 5监督分类RGB:412 ALOS分类波段RGB:432
- oracle闪回表详解
--- 说明闪回数据库 --- 使用闪回表将表内容还原到过去的特定时间点 --- 从删除表中进行恢复 --- 使用闪回查询查看截止到任一时间点的数据库内容 --- 使用闪回版本查询查看某一行在一段时间 ...
- PHP webserver 之 soap non-wsdl
non-wsdl 顾名思义就是不使用wsdl文件进行的webserver服务 事实上个人觉得用wsdl模式还不如使用non-wsdl模式,wsdl模式稍加麻烦! 1.网站运行环境下开启soap模块(p ...
- 可视化Windows服务定时任务
思路:1.新建一个<Windows服务项目>,在里面建服务文件(可以多个),用来做要执行的任务. 2.新建一个<Windows窗体应用程序>,在这个程序里管理服务.如:安装.卸 ...