后缀数组的应用。和男人八题那个后缀数组差不多。

 /* 2890 */
#include <iostream>
#include <sstream>
#include <string>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <vector>
#include <deque>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <ctime>
#include <cstring>
#include <climits>
#include <cctype>
#include <cassert>
#include <functional>
#include <iterator>
#include <iomanip>
using namespace std;
//#pragma comment(linker,"/STACK:102400000,1024000") #define sti set<int>
#define stpii set<pair<int, int> >
#define mpii map<int,int>
#define vi vector<int>
#define pii pair<int,int>
#define vpii vector<pair<int,int> >
#define rep(i, a, n) for (int i=a;i<n;++i)
#define per(i, a, n) for (int i=n-1;i>=a;--i)
#define clr clear
#define pb push_back
#define mp make_pair
#define fir first
#define sec second
#define all(x) (x).begin(),(x).end()
#define SZ(x) ((int)(x).size())
#define lson l, mid, rt<<1
#define rson mid+1, r, rt<<1|1 const int maxn = ;
int a[maxn], b[maxn], aa[maxn];
int pos[maxn], pn;
int rrank[maxn], height[maxn], sa[maxn];
int wa[maxn], wb[maxn], wc[maxn], wv[maxn];
int n, k, at; bool cmp(int *r, int a, int b, int l) {
return r[a]==r[b] && r[a+l]==r[b+l];
} void da(int *r, int *sa, int n, int m) {
int i, j, *x=wa, *y=wb, *t, p; for (i=; i<m; ++i) wc[i] = ;
for (i=; i<n; ++i) wc[x[i]=r[i]]++;
for (i=; i<m; ++i) wc[i] += wc[i-];
for (i=n-; i>=; --i) sa[--wc[x[i]]] = i;
for (j=,p=; p<n; j*=, m=p) {
for (p=,i=n-j; i<n; ++i) y[p++] = i;
for (i=; i<n; ++i) if (sa[i] >= j) y[p++] = sa[i] - j;
for (i=; i<n; ++i) wv[i] = x[y[i]];
for (i=; i<m; ++i) wc[i] = ;
for (i=; i<n; ++i) wc[wv[i]]++;
for (i=; i<m; ++i) wc[i] += wc[i-];
for (i=n-; i>=; --i) sa[--wc[wv[i]]] = y[i];
for (t=x, x=y, y=t, i=,p=,x[sa[]]=; i<n; ++i)
x[sa[i]] = cmp(y, sa[i-], sa[i], j) ? p-:p++;
}
} void calheight(int *r, int *sa, int n) {
int i, j, k=; for (i=; i<=n; ++i) rrank[sa[i]] = i;
for (i=; i<n; height[rrank[i++]]=k)
for (k?k--:, j=sa[rrank[i]-]; r[i+k]==r[j+k]; ++k);
} bool judge(int bound) {
int i = ;
int pn = ; while (i <= n) {
if (height[i] < bound) {
at = sa[i-];
sort(pos, pos+pn);
int kk = , p = pos[];
rep(j, , pn) {
if (pos[j]-p >= bound) {
p = pos[j];
++kk;
}
} if (kk >= k)
return true;
pn = ;
pos[pn++] = sa[i++];
} else {
pos[pn++] = sa[i++];
}
}
at = sa[n-];
sort(pos, pos+pn);
int kk = , p = pos[];
rep(j, , pn) {
if (pos[j]-p >= bound) {
p = pos[j];
++kk;
}
} if (kk >= k)
return true; return false;
} void printSa(int n) {
for (int i=; i<=n; ++i)
printf("%d ", sa[i]);
putchar('\n');
} void printHeight(int n) {
for (int i=; i<=n; ++i)
printf("%d ", height[i]);
putchar('\n');
} void solve() {
sort(b, b+n);
int nn = unique(b, b+n) - b; rep(i, , n)
aa[i] = lower_bound(b, b+nn, a[i]) - b + ;
aa[n] = ; da(aa, sa, n+, nn+);
calheight(aa, sa, n); #ifndef ONLINE_JUDGE
// printSa(n);
// printHeight(n);
#endif int l = , r = n, mid;
int ans = , fr; while (l <= r) {
mid = (l + r) >> ;
if (judge(mid)) {
ans = mid;
fr = at;
l = mid + ;
} else {
r = mid - ;
}
} printf("%d\n", ans);
rep(i, , ans)
printf("%d\n", b[aa[fr+i]-]);
} int main() {
ios::sync_with_stdio(false);
#ifndef ONLINE_JUDGE
freopen("data.in", "r", stdin);
freopen("data.out", "w", stdout);
#endif int t; scanf("%d", &t);
while (t--) {
scanf("%d %d", &n, &k);
rep(i, , n) {
scanf("%d", &a[i]);
b[i] = a[i];
}
solve();
if (t)
putchar('\n');
} #ifndef ONLINE_JUDGE
printf("time = %d.\n", (int)clock());
#endif return ;
}

【HDOJ】2890 Longest Repeated subsequence的更多相关文章

  1. 【LeetCode】522. Longest Uncommon Subsequence II 解题报告(Python)

    [LeetCode]522. Longest Uncommon Subsequence II 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemin ...

  2. 【leetcode】300.Longest Increasing Subsequence

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  3. 【Lintcode】077.Longest Common Subsequence

    题目: Given two strings, find the longest common subsequence (LCS). Your code should return the length ...

  4. 【Lintcode】076.Longest Increasing Subsequence

    题目: Given a sequence of integers, find the longest increasing subsequence (LIS). You code should ret ...

  5. 【Leetcode_easy】594. Longest Harmonious Subsequence

    problem 594. Longest Harmonious Subsequence 最长和谐子序列 题意: 可以对数组进行排序,那么实际上只要找出来相差为1的两个数的总共出现个数就是一个和谐子序列 ...

  6. 【leetcode】521. Longest Uncommon Subsequence I

    problem 521. Longest Uncommon Subsequence I 最长非共同子序列之一 题意: 两个字符串的情况很少,如果两个字符串相等,那么一定没有非共同子序列,反之,如果两个 ...

  7. 【leetcode】1218. Longest Arithmetic Subsequence of Given Difference

    题目如下: Given an integer array arr and an integer difference, return the length of the longest subsequ ...

  8. 【leetcode】1143. Longest Common Subsequence

    题目如下: Given two strings text1 and text2, return the length of their longest common subsequence. A su ...

  9. 【LeetCode】594. Longest Harmonious Subsequence 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 统计次数 日期 题目地址:https://leetc ...

随机推荐

  1. C#对象转JSON字符串和JSON字符串转对象

    namespace Net.String.ConsoleApplication { using System; using System.Data; using System.Collections; ...

  2. android.intent.action.MAIN 与 android.intent.category.LAUNCHER 的验证理解

    第一种情况:有MAIN,无LAUNCHER,程序列表中无图标 原因:android.intent.category.LAUNCHER决定应用程序是否显示在程序列表里  第二种情况:无MAIN,有LAU ...

  3. 分享php中四种webservice实现的简单架构方法及实例[转载]

    [转载]http://www.itokit.com/2012/0417/73615.html 本人所了解的webservice有以下几种:PHP本身的SOAP,开源的NUSOAP,商业版的PHPRPC ...

  4. PHP获取当前时间的毫秒数(yyyyMMddHHmmssSSS)

    1 second = 1000 millisecond = 1000,000 microsecond = 1000,000,000 nanosecond php的毫秒是没有默认函数的,但提供了一个mi ...

  5. SSH-KEY服务及批量分发与管理实战

    SSH服务 一.SSH服务介绍 SSH是Secure Shell Protocol的简写,由IETF网络工作小组制定:在进行数据传输之前,SSH先对联机数据包通过加密技术进行加密处理,加密后再进行数据 ...

  6. oracle的function和procedure返回值给shell

    本文演示两个关于如何在shell中调用oracle的function和procedure,并将返回值返回给shell. 1.首在package中创建function和procedure,脚本如下: G ...

  7. 【BZOJ 1497】 [NOI2006]最大获利

    Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一 ...

  8. ASP.NET如何获取根目录的方法汇总

    编写程序的时候,经常需要用的项目根目录,自己总结如下: 1.取得控制台应用程序的根目录方法 方法1.Environment.CurrentDirectory 取得或设置当前工作目录的完整限定路径 方法 ...

  9. 浅淡Windows7 32位与64位/x86与x64的区别

    看到有很多会员问到底是选Windows7 x86,还是选x64.这里简单的谈一下这这两种系统的区别. 简单的说x86代表32位操作系统  x64代表64位操作系统. 简单的判断电脑是否支持64位操作系 ...

  10. fzu 2105 Digits Count ( 线段树 ) from 第三届福建省大学生程序设计竞赛

    http://acm.fzu.edu.cn/problem.php?pid=2105 Problem Description Given N integers A={A[0],A[1],...,A[N ...