http://acm.hdu.edu.cn/showproblem.php?pid=5755

题意:一个N*M的矩阵,改变一个格子,本身+2,四周+1.同时mod 3;问操作多少次,矩阵变为全0.输出次数和具体位置

由于影响是相互的,所以增广矩阵的系数a[t][t+1] 或者是 a[t+1][t]均可;只需注意往结果中添加位置时,x[i]表示要操作x[i]次,所以位置要重复添加x[i]次;

高斯消元时间复杂度为O(N3M3);

 #pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
#define rep0(i,l,r) for(int i = (l);i < (r);i++)
#define rep1(i,l,r) for(int i = (l);i <= (r);i++)
#define rep_0(i,r,l) for(int i = (r);i > (l);i--)
#define rep_1(i,r,l) for(int i = (r);i >= (l);i--)
#define MS0(a) memset(a,0,sizeof(a))
#define MS1(a) memset(a,-1,sizeof(a))
#define MSi(a) memset(a,0x3f,sizeof(a))
#define pb push_back
#define A first
#define B second
#define MK make_pair
#define inf 0x3f3f3f3f
#define eps 1e-8
#define zero(x) (((x)>0?(x):-(x))<eps)
#define bitnum(a) __builtin_popcount(a)
#define lowbit(x) (x&(-x))
#define clear0 (0xFFFFFFFE)
#define mod 3
#define K(x) ((x)*(x))
typedef pair<int,int> PII;
typedef long long ll;
typedef unsigned long long ull;
template<typename T>
void read1(T &m)
{
T x = ,f = ;char ch = getchar();
while(ch <'' || ch >''){ if(ch == '-') f = -;ch=getchar(); }
while(ch >= '' && ch <= ''){ x = x* + ch - '';ch = getchar(); }
m = x*f;
}
template<typename T>
void read2(T &a,T &b){read1(a);read1(b);}
template<typename T>
void read3(T &a,T &b,T &c){read1(a);read1(b);read1(c);}
template<typename T>
void out(T a)
{
if(a>) out(a/);
putchar(a%+'');
}
inline ll gcd(ll a,ll b){ return b == ? a: gcd(b,a%b); }
inline ll lcm(ll a,ll b){ return a/gcd(a,b)*b; }
const int maxn = ;
int a[maxn][maxn];
int x[maxn<<]; void init(int n,int m)
{
rep0(i,,n) rep0(j,,m){
int t = i*m + j;
a[t][t] = ;
if(i > ) a[t - m][t] = ;
if(i < n-) a[t + m][t] = ;
if(j > ) a[t-][t] = ;
if(j < m-) a[t+][t] = ;
}
} int equ, var;
int Gauss()
{
int mx, row, col;
for(row = , col = ; row < equ && col < var; row++, col++){
mx = row;
for(int i = row+;i < equ;i++){
if(abs(a[i][col]) > abs(a[mx][col])) mx = i;
}
if(a[mx][col] == ) {
row--;
continue;
}
if(mx != row){
for(int j = col;j < var + ;j++)
swap(a[row][j], a[mx][j]);
}
for(int i = row+;i < equ;i++){
if(a[i][col]){
int LCM = lcm(abs(a[i][col]), abs(a[row][col]));
int ta = LCM/abs(a[i][col]), tb = LCM/abs(a[row][col]);
if(a[i][col] * a[row][col] < ) tb = -tb;
for(int j = col; j < var+;j++)
a[i][j] = ((a[i][j]*ta - a[row][j]*tb)%mod+mod)%mod;
}
}
} for(int i = var-; i >= ; i--){
if(a[i][i] == ) continue;
int tmp = a[i][var];
for(int j = i+;j < var;j++){
if(a[i][j]){
tmp -= a[i][j]*x[j];
tmp = (tmp%mod + mod)% mod;
}
}
x[i] = (tmp*a[i][i])% mod;
}
return ;
}
vector<int> vec;
int main()
{
//freopen("data.txt","r",stdin);
//freopen("out.txt","w",stdout);
int T, kase = ;
scanf("%d",&T);
while(T--){
int n, m, t;
read2(n,m);
equ = n*m, var = n*m;
MS0(a);
rep0(i,,n) rep0(j,,m) read1(t), a[i*m+j][var] = (mod-t)%mod;
init(n,m); Gauss();
vec.clear();
rep0(i,,var) while(x[i]--) vec.pb(i);
out(vec.size());puts("");
rep0(i,,vec.size()) printf("%d %d\n",vec[i]/m + , vec[i]%m + );
}
return ;
}

hdu 5755 2016 Multi-University Training Contest 3 Gambler Bo 高斯消元模3同余方程的更多相关文章

  1. hdu 5755 Gambler Bo 高斯消元

    题目链接 给n*m的方格, 每个格子有值{0, 1, 2}. 然后可以对格子进行操作, 如果选择了一个格子, 那么这个格子的值+2, 这个格子上下左右的格子+1, 并且模3. 问你将所有格子变成0的操 ...

  2. hdu 5755(高斯消元——模线性方程组模板)

    PS. 看了大神的题解,发现确实可以用m个未知数的高斯消元做.因为确定了第一行的情况,之后所有行的情况都可以根据第一行推. 这样复杂度直接变成O(m*m*m) 知道了是高斯消元后,其实只要稍加处理,就 ...

  3. 【HDU 5833】Zhu and 772002(异或方程组高斯消元)

    300个最大质因数小于2000的数,选若干个它们的乘积为完全平方数有多少种方案. 合法方案的每个数的质因数的个数的奇偶值异或起来为0. 比如12=2^2*3,对应的奇偶值为01(2的个数是偶数为0,3 ...

  4. 【HDU 5833】Zhu and 772002(异或方程组高斯消元讲解)

    题目大意:给出n个数字a[],将a[]分解为质因子(保证分解所得的质因子不大于2000),任选一个或多个质因子,使其乘积为完全平方数.求其方法数. 学长学姐们比赛时做的,当时我一脸懵逼的不会搞……所以 ...

  5. HDU.3571.N-dimensional Sphere(高斯消元 模线性方程组)

    题目链接 高斯消元详解 /* $Description$ 在n维空间中给定n+1个点,求一个点使得这个点到所有点的距离都为R(R不给出).点的任一坐标|xi|<=1e17. $Solution$ ...

  6. 2016 Al-Baath University Training Camp Contest-1

    2016 Al-Baath University Training Camp Contest-1 A题:http://codeforces.com/gym/101028/problem/A 题意:比赛 ...

  7. HDU 5755 Gambler Bo(高斯消元)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5755 [题目大意] 一个n*m由0,1,2组成的矩阵,每次操作可以选取一个方格,使得它加上2之后对 ...

  8. 【 HDU 4936 】Rainbow Island (hash + 高斯消元)

    BUPT2017 wintertraining(15) #5B HDU - 4936 2014 Multi-University Training Contest 7 F 题意 直接看官方的题意和题解 ...

  9. HDU 5833 Zhu and 772002 (高斯消元)

    Zhu and 772002 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5833 Description Zhu and 772002 are b ...

随机推荐

  1. JDBC驱动的四种类型

    Java中的JDBC驱动可以分为四种类型,包括JDBC-ODBC桥.本地API驱动.网络协议驱动和本地协议驱动. JDBC驱动类型一.JDBC-ODBC桥 JDBC-ODBC 桥 是sun公司提供的, ...

  2. pl sql 变量的声明和赋值

    链接地址:http://www.cnblogs.com/zhengcheng/p/4168670.html 一.什么是PL-SQL PL-SQL是结合了Oracle过程语言和结构化查询语言(SQL)的 ...

  3. spring--事务原理

    Spring支持以下7种事务传播行为. 传播行为 XML文件 propagation值 含义 PROPAGATION_REQUIRED REQUIRED 表示当前方法必须在一个具有事务的上下文中运行. ...

  4. maven install与maven package 的区别

    mvn install 是将你打好的jar包安装到你的本地库中,一般没有设置过是在 用户目录下的 .m2\下面.mvn package 只是将你的代码打包到输出目录,一般的是 target下面.

  5. 转: android app进程保活的文章列表

    1. Android 后台任务型App多进程架构演化 http://www.jianshu.com/p/4ac1f373e8cd 2. 关于 Android 进程保活,你所需要知道的一切 http:/ ...

  6. 2014.10.09 Andrew 学习 WPF(刘铁锰) 笔记分享

    引言 主要是讲了关于WPF只是表现层的工具. 第一章: XAML : 可扩张应用程序标记语言    Extensible Application Markup Language 什么是XAML?  X ...

  7. C# 中怎么将string转换成int型

    int intA = 0;1.intA =int.Parse(str);2.int.TryParse(str, out intA);3.intA = Convert.ToInt32(str);以上都可 ...

  8. iOS - 数组(NSArray)

    1. 数组的常用处理方式 //--------------------不可变数组 //1.数组的创建 NSString *s1 = @"zhangsan"; NSString *s ...

  9. spring事务配置的坑

    基于 <tx> 命名空间的声明式事务管理 前面两种声明式事务配置方式奠定了 Spring 声明式事务管理的基石.在此基础上,Spring 2.x 引入了 <tx> 命名空间,结 ...

  10. 分享9款极具创意的HTML5/CSS3进度条动画

    1.HTML5/CSS3图片加载进度条 可切换多主题 今天要分享的这款HTML5/CSS3进度条模拟了真实的图片加载场景,插件会默认去从服务器下载几张比较大的图片,然后让该进度条展现当前读取图片的进度 ...