Face The Right Way
| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 2564 | Accepted: 1177 |
Description
Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing forward, like good cows. Some of them are facing backward, though, and he needs them all to face forward to make his life perfect.
Fortunately, FJ recently bought an automatic cow turning machine. Since he purchased the discount model, it must be irrevocably preset to turn K (1 ≤ K ≤ N) cows at once, and it can only turn cows that are all standing next to each other in line. Each time the machine is used, it reverses the facing direction of a contiguous group of K cows in the line (one cannot use it on fewer than K cows, e.g., at the either end of the line of cows). Each cow remains in the same *location* as before, but ends up facing the *opposite direction*. A cow that starts out facing forward will be turned backward by the machine and vice-versa.
Because FJ must pick a single, never-changing value of K, please help him determine the minimum value of K that minimizes the number of operations required by the machine to make all the cows face forward. Also determine M, the minimum number of machine operations required to get all the cows facing forward using that value of K.
Input
Lines 2..N+1: Line i+1 contains a single character, F or B, indicating whether cow i is facing forward or backward.
Output
Sample Input
7
B
B
F
B
F
B
B
Sample Output
3 3
Hint
#include"iostream"
#include"cstring"
#include"cstdio"
#include"algorithm"
#include"cstdlib"
#include"ctime"
using namespace std;
const int ms=;
int dir[ms];
int f[ms];
int N;
int calc(int K)
{
memset(f,,sizeof(f));
int res=;
int sum=;//f的∑
for(int i=;i+K<=N;i++)
{
if((dir[i]+sum)&)
{
res++;
f[i]=;
}
sum+=f[i];
if(i-K+>=)
{
sum-=f[i-K+];
}
}
for(int i=N-K+;i<N;i++)
{
if((dir[i]+sum)&)
return -;
if((i-K+)>=)
sum-=f[i-K+];
}
return res;
}
void solve()
{
int K=,M=N;
for(int k=;k<=N;k++)
{
int m=calc(k);
if(m>=&&M>m)
{
M=m;
K=k;
}
}
printf("%d %d\n",K,M);
}
int main()
{
scanf("%d",&N);
char str[];
for(int i=;i<N;i++)
{
scanf("%s",str);
if(str[]=='B')
dir[i]=;
else
dir[i]=;
}
solve();
return ;
}
随机推荐
- 多校7 HDU5818 Joint Stacks
多校7 HDU5818 Joint Stacks 题意:n次操作.模拟栈的操作,合并的以后,每个栈里的元素以入栈顺序排列 思路:开三个栈,并且用到了merge函数 O(n)的复杂度 #include ...
- JAVA中的异常(异常处理流程、异常处理的缺陷)
异常处理流程 1)首先由try{...}catch(Exception e){ System.out.println(e); e.printStackTrace(); }finally{...}结构 ...
- Maven管理多模块项目
首先,我们要明确的多模块项目的含义,它是指一个应用中包含多个module.一般来说,一个应用单独部署成服务,只是打包的时候,maven会把各个module组合在一起.各模块一般单独打成jar放到lib ...
- 探索ORACLE之ASM概念
一. ASM(自动存储管理)的来由: ASM是Oracle 10g R2中为了简化Oracle数据库的管理而推出来的一项新功能,这是Oracle自己提供的卷管理器,主要用于替代操作系统所提供的 ...
- 现代程序设计homework——04
题目: 详见:http://www.cnblogs.com/xinz/p/3341551.html 题目本身确实很难,“很难想到一个比较优雅的算法”,这是一个老师请来专门讲解这道题的大牛的原话.确实, ...
- Java设计模式系列之适配器模式
适配器模式的定义 将一个类的接口转换成客户希望的另外一个接口.Adapter模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作.(就类似于我们充电器的转接头将220V的电压转换成我们的手机端 ...
- DB2 VALUES用法详解
都知道Oracle有一个虚表(dual),我们可以用select sysdate from dual获取寄存器中的值.在DB2中,可以通过SYSIBM.SYSDUMMY1.SYSIBM.DUAL获取寄 ...
- C#Windows窗体界面设计_01_绘制三角函数_附强制类型转换
binzhouweichao@163.com 今天开始学习C#windows窗体界面设计. 首先说一下类型转换. 参考http://www.csharpwin.com/csharpspace/6848 ...
- String(byte[] bytes, String charsetName)
String str = new String("时之沙"); byte bytes[] = str.getBytes("GBK"); byte byte2[] ...
- 多线程和Boost::Asio
线程安全 一般的,高并发使用不同的对象是安全的,在高并发中使用单一的对象是不安全的,io_service类型提供了单对象高并发的强安全保证. 线程池 多线程可能调用io_service::run()来 ...