Let $A$ be a nilpotent operator. Show how to obtain, from aJordan basis for $A$, aJordan basis of $\wedge^2A$.

Solution. Since $A$ is nilpotent, each eigenvalue of $A$ is zero, and thus there exists an basis $e_1,\cdot,e_n$ of $\scrH$ such that $$\bex A(e_1,\cdots,e_n)=(e_1,\cdots,e_n) \sex{\ba{cccc} 0_s&&&\\ &J_1&&\\ &&\ddots&\\ &&&J_t \ea},\quad J_{i}=\sex{\ba{cccc} 0&1&&\\ &\ddots&\ddots&\\ &&\ddots&1\\ &&&0 \ea}_{n_i\times n_i} \eex$$ with $$\bex s+\sum_{i=1}^t n_i=n. \eex$$ Hence $Ae_i=0$ for $$\bex i\in S=\sed{1\leq i\leq s+1, s+\sum_{i=1}^jn_i+1,\ j=1,\cdots,t-1}, \eex$$ and $Ae_k=0$ for $$\bex k\in T=\cup_{j=1}^t T_j,\quad T_j=\sed{s+\sum_{i=1}^{j-1}n_i+2\leq k\leq s+\sum_{i=1}^j n_i+2}. \eex$$ Thus $$\bex k\neq j,\ k,j\in T\lra 0\neq \wedge^2A(e_k\wedge e_l)=e_{k-1}\wedge e_{l-1}. \eex$$ Hence $\wedge^2 A$ has a Jordan basis $$\bex e_i\wedge e_j;(i\in S,i<j\leq n) \eex$$ $$\bex e_k\wedge e_{k+1};\quad\sex{k\in T}; \eex$$ $$\bex e_k\wedge e_{k+2};\quad\sex{k\in T}; \eex$$ $$\bex \cdots,\quad e_{s+2}\wedge e_n. \eex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.6的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. Linux内核树的建立-基于ubuntu系统

    刚看 O'REILLY 写的<LINUX 设备驱动程序>时.作者一再强调在编写驱动程序时必须 建立内核树.先前的内核只需要有一套内核头文件就够了,但因为2.6的内核模块吆喝内核源码树中的目 ...

  2. C#时间戳与时间互转

    /// <summary> /// 时间戳转成时间类型 /// </summary> /// <param name="timeStamp">& ...

  3. C#正则表达式Regex类

    C#正则表达式Regex类的使用 C#中为正则表达式的使用提供了非常强大的功能,这就是Regex类.这个包包含于System.Text.RegularExpressions命名空间下面,而这个命名空间 ...

  4. replace()替换文字

    var test = text.innerHTML; b = test.replace(/任晓强/g,"你好"); console.log(b); html: <div id ...

  5. C++: 单例模式和缺陷

    C++: 单例模式和缺陷 实现一个单例模式 1 class Singleton { 2     private: 3         Singleton() { cout << " ...

  6. HDU4631+Set+最近点对

    题意:一个空平面,每次增加一个点, 其坐标根据上一个点算出:(x[i-1] * Ax + Bx ) mod Cx,(y[i-1] * Ay + By ) mod Cy 求出现有点集中的最近点对的距离的 ...

  7. ubuntu12 开机自动转到命令行

    命令: sudo gedit /etc/default/grub 找到这一行 GRUB_CMDLINE_LINUX_DEFAULT="quiet splash"改成 GRUB_CM ...

  8. [itint5]棋盘漫步

    要注意dp[0][0]要初始化为1. int totalPath(vector<vector<bool> > &blocked) { int m = blocked.s ...

  9. [mock]12月11日

    给出一个二叉搜索树的先序遍历,要求重新构造出这个二叉搜索树.一开始给出了一个递归的算法,指出复杂度有更优的解法.然后想出来一个O(n)的算法,就是使用一个栈,然后依次判断新的节点比原来的大还是小,然后 ...

  10. caffe简易上手指南(一)—— 运行cifar例子

    简介 caffe是一个友好.易于上手的开源深度学习平台,主要用于图像的相关处理,可以支持CNN等多种深度学习网络. 基于caffe,开发者可以方便快速地开发简单的学习网络,用于分类.定位等任务,也可以 ...