[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.6
Let $A$ be a nilpotent operator. Show how to obtain, from aJordan basis for $A$, aJordan basis of $\wedge^2A$.
Solution. Since $A$ is nilpotent, each eigenvalue of $A$ is zero, and thus there exists an basis $e_1,\cdot,e_n$ of $\scrH$ such that $$\bex A(e_1,\cdots,e_n)=(e_1,\cdots,e_n) \sex{\ba{cccc} 0_s&&&\\ &J_1&&\\ &&\ddots&\\ &&&J_t \ea},\quad J_{i}=\sex{\ba{cccc} 0&1&&\\ &\ddots&\ddots&\\ &&\ddots&1\\ &&&0 \ea}_{n_i\times n_i} \eex$$ with $$\bex s+\sum_{i=1}^t n_i=n. \eex$$ Hence $Ae_i=0$ for $$\bex i\in S=\sed{1\leq i\leq s+1, s+\sum_{i=1}^jn_i+1,\ j=1,\cdots,t-1}, \eex$$ and $Ae_k=0$ for $$\bex k\in T=\cup_{j=1}^t T_j,\quad T_j=\sed{s+\sum_{i=1}^{j-1}n_i+2\leq k\leq s+\sum_{i=1}^j n_i+2}. \eex$$ Thus $$\bex k\neq j,\ k,j\in T\lra 0\neq \wedge^2A(e_k\wedge e_l)=e_{k-1}\wedge e_{l-1}. \eex$$ Hence $\wedge^2 A$ has a Jordan basis $$\bex e_i\wedge e_j;(i\in S,i<j\leq n) \eex$$ $$\bex e_k\wedge e_{k+1};\quad\sex{k\in T}; \eex$$ $$\bex e_k\wedge e_{k+2};\quad\sex{k\in T}; \eex$$ $$\bex \cdots,\quad e_{s+2}\wedge e_n. \eex$$
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.6的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- 编译andriod源码出错:java.lang.UnsupportedClassVersionError: com/google/doclava/Doclava : Unsupported
问题:java.lang.UnsupportedClassVersionError: com/google/doclava/Doclava : Unsupported update-java-alte ...
- C++ 虚函数表解析(转载)
转载自:陈皓 http://blog.csdn.net/haoel/article/details/1948051/ 前言 C++中的虚函数的作用主要是实现了多态的机制.关于多态,简而言之就是用父类型 ...
- 【BZOJ 2321】 [BeiJing2011集训]星器
Description Magic Land上的时间又过了若干世纪…… 现在,人们谈论着一个传说:从前,他们的祖先来到了一个位于东方的岛屿,那里简直就是另外一个世界.善于分析与构造的Magic Lan ...
- poj 1094 Sorting It All Out (拓扑排序)
http://poj.org/problem?id=1094 Sorting It All Out Time Limit: 1000MS Memory Limit: 10000K Total Su ...
- 1058: [ZJOI2007]报表统计 - BZOJ
Description 小Q的妈妈是一个出纳,经常需要做一些统计报表的工作.今天是妈妈的生日,小Q希望可以帮妈妈分担一些工作,作为她的生日礼物之一.经过仔细观察,小Q发现统计一张报表实际上是维护一个非 ...
- ExtJS4.2学习(20)动态数据表格之前几章总结篇1(转)
鸣谢:http://www.shuyangyang.com.cn/jishuliangongfang/qianduanjishu/2014-02-18/196.html --------------- ...
- IntelliJ IDEA 部署Tomcat及创建一个web工程
一.部署Tomcat 二.新建一个web工程 1.新建一个Project 2.现在建立一个简单的web工程,所以只勾选下面选中的,此外,本版本(IntelliJ IDEA 14.1.5只支持3.1版本 ...
- js的面向对象的程序设计之理解继承
来自<javascript高级程序设计 第三版:作者Nicholas C. Zakas>的学习笔记(六) 先来解析下标题——对象和继承~ 一.对象篇 ECMA-262把对象的定义为:&qu ...
- linux后台执行命令&
当在前台运行某个作业时,终端被该作业占据:而在后台运行作业时,它不会占据终端.可以使用&命令把作业放到后台执行. 如:30 2 * * * /data/app/scripts/hotbacku ...
- 李洪强iOS开发之OC[018]对象和方法之间的关系
// // main.m // 18 - 对象和方法之间的关系 // // Created by vic fan on 16/7/14. // Copyright © 2016年 李洪强. A ...