[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.6
Let $A$ be a nilpotent operator. Show how to obtain, from aJordan basis for $A$, aJordan basis of $\wedge^2A$.
Solution. Since $A$ is nilpotent, each eigenvalue of $A$ is zero, and thus there exists an basis $e_1,\cdot,e_n$ of $\scrH$ such that $$\bex A(e_1,\cdots,e_n)=(e_1,\cdots,e_n) \sex{\ba{cccc} 0_s&&&\\ &J_1&&\\ &&\ddots&\\ &&&J_t \ea},\quad J_{i}=\sex{\ba{cccc} 0&1&&\\ &\ddots&\ddots&\\ &&\ddots&1\\ &&&0 \ea}_{n_i\times n_i} \eex$$ with $$\bex s+\sum_{i=1}^t n_i=n. \eex$$ Hence $Ae_i=0$ for $$\bex i\in S=\sed{1\leq i\leq s+1, s+\sum_{i=1}^jn_i+1,\ j=1,\cdots,t-1}, \eex$$ and $Ae_k=0$ for $$\bex k\in T=\cup_{j=1}^t T_j,\quad T_j=\sed{s+\sum_{i=1}^{j-1}n_i+2\leq k\leq s+\sum_{i=1}^j n_i+2}. \eex$$ Thus $$\bex k\neq j,\ k,j\in T\lra 0\neq \wedge^2A(e_k\wedge e_l)=e_{k-1}\wedge e_{l-1}. \eex$$ Hence $\wedge^2 A$ has a Jordan basis $$\bex e_i\wedge e_j;(i\in S,i<j\leq n) \eex$$ $$\bex e_k\wedge e_{k+1};\quad\sex{k\in T}; \eex$$ $$\bex e_k\wedge e_{k+2};\quad\sex{k\in T}; \eex$$ $$\bex \cdots,\quad e_{s+2}\wedge e_n. \eex$$
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.6的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- Sql查询除ID以外相同的数据
id NAME AGE1 n1 12 n1 13 n2 24 n2 25 n22 ...
- php数组内容分页的例子(转)
php数组内容分页代码 时间:2016-03-04 23:46:34来源:网络 导读:php数组内容分页代码,当前页如果大于总页数,当前页为最后一页,分页显示时,应该从多少条信息开始读取数据. p ...
- 1065: [NOI2008]奥运物流 - BZOJ
Sample Input4 1 0.52 3 1 310.0 10.0 10.0 10.0Sample Output30.00 推荐题解:http://blog.csdn.net/whjpji/art ...
- vim查看函数原型以及关闭窗口
问题描述: vim中查看函数原型,以及关闭vim窗口 问题解决: (1)查看函数原型 使用Shift+K可以查看用户手册 (2)自定义函数 ...
- MVC4中Ajax.BeginForm OnSuccess 不执行以及控制器返回JsonResult 提示下载的原因
这几天学习MVC的过程中,在学习Ajax.BeginForm时,一直遇到2个问题: 一. Ajax.BeginForm OnSuccess事件不执行 二.提交表单后,浏览器不识别json字符串,提示下 ...
- python参考手册--第4、5、6、7章
1.zip zip(s,t):将序列组合为一个元组序列[(s[0],t[0]), (s[1],t[1]), (s[2],t[2]), (s[3],t[3]),...] >>> s = ...
- java Collections.sort()实现List排序的默认方法和自定义方法
1.java提供的默认list排序方法 主要代码: List<String> list = new ArrayList();list.add("刘媛媛"); list. ...
- SQLite设置主键自动增长及插入语法
SQLite中,一个自增长字段定义为INTEGER PRIMARY KEY AUTOINCREMENT,那么在插入一个新数据时,只需要将这个字段的值指定为NULL,即可由引擎自动设定其值,引擎会设定为 ...
- 使用LinkedList实现Stack与Queue
LinkedList数据结构是一种双向的链式结构,每一个对象除了数据本身外,还有两个引用,分别指向前一个元素和后一个元素. 栈的定义栈(Stack)是限制仅在线性表的一端进行插入和删除运算.(1)通常 ...
- 强强合体:Docker版Kali Linux发布
Kali Linux是一款开源的基于Debian的渗透测试专用操作系统,系统中包含一系列用于渗透测试的神器.最近,Kali的开发者们为喜爱Docker的童鞋们发布了新版本. FreeBuf百科:什么是 ...