1. Nonvolatile memory(e.g., Phase Change Memory) blurs the boundary between memory and storage and it could greatly facilitate the construction of in-memory durable data structures. Data structures can be processed and stored directly in NVRAM. To XXX, YYY is a widely adopted mechanism. However, XXXXXXXX. By leveraging the XXXXX, we can YYYYYY. We tested our YYYYYY. Experiment results show that ZZZZZZZ, which can help extend the lifetime of NVRAM and improve performance.

2. By enabling efficient XXXX, YYY serve as the foundation for ZZZ.  For example: By enabling efficient insertions, point lookups, and range queries, key-value stores serve as the foundation for this growing group of important applications.

3. For write-intensive workloads, key-value stores based on Log-Structured Merge-Trees(LSM-trees)[1] have become the state of the art. Various distributed and local stores built on LSM-trees are widely deployed in large-scale production environments, such as BigTable [2] and LevelDB [3] at Google, Cassandra [4], HBase [5] and RocksDB [6] at Facebook, and Riak [7] at Basho. The main advantage of LSM-trees over other indexing structures (such as B-trees) is that they maintain sequential access patterns for writes. Small updates on B-trees may involve many random writes, and are hence not efficient on either solid-state storage devices or hard-disk drives.

-----

Reference

[1] Patrick ONeil, Edward Cheng, Dieter Gawlick, and Elizabeth ONeil. The Log-Structured MergeTree (LSM-tree). Acta Informatica, 33(4):351–385, 1996.

[2] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Michael Burrows, Tushar Chandra, Andrew Fikes, and Robert Gruber. Bigtable: A Distributed Storage System for Structured Data. In Proceedings of the 7th Symposium on Operating Systems Design and Implementation (OSDI ’06), pages 205–218, Seattle, Washington, November 2006.

[3] Sanjay Ghemawat and Jeff Dean. LevelDB. http://code.google.com/p/leveldb, 2011.

[4] Avinash Lakshman and Prashant Malik. Cassandra – A Decentralized Structured Storage System. In The 3rd ACM SIGOPS International Workshop on Large Scale Distributed Systems and Middleware, Big Sky Resort, Montana, Oct 2009.

[5] Tyler Harter, Dhruba Borthakur, Siying Dong, Amitanand Aiyer, Liyin Tang, Andrea C. ArpaciDusseau, and Remzi H. Arpaci-Dusseau. Analysis of HDFS Under HBase: A Facebook Messages Case Study. In Proceedings of the 12th
USENIX Symposium on File and Storage Technologies (FAST ’14), Santa Clara, California, February 2014.

[6] Facebook. RocksDB. http://rocksdb.org/, 2013.

[7] Riak. http://docs.basho.com/riak/, 2015.

[8]

SSD论文优秀句子的更多相关文章

  1. 深度学习 目标检测算法 SSD 论文简介

    深度学习 目标检测算法 SSD 论文简介 一.论文简介: ECCV-2016 Paper:https://arxiv.org/pdf/1512.02325v5.pdf  Slides:http://w ...

  2. SSD论文理解

    SSD论文贡献: 1. 引入了一种单阶段的检测器,比以前的算法YOLO更准更快,并没有使用RPN和Pooling操作: 2. 使用一个小的卷积滤波器应用在不同的feature map层从而预测BB的类 ...

  3. 翻译SSD论文(Single Shot MultiBox Detector)

    转自http://lib.csdn.net/article/deeplearning/53059 作者:Ai_Smith 本文翻译而来,如有侵权,请联系博主删除.未经博主允许,请勿转载.每晚泡脚,闲来 ...

  4. 深度学习笔记(七)SSD 论文阅读笔记简化

    一. 算法概述 本文提出的SSD算法是一种直接预测目标类别和bounding box的多目标检测算法.与faster rcnn相比,该算法没有生成 proposal 的过程,这就极大提高了检测速度.针 ...

  5. 深度学习笔记(七)SSD 论文阅读笔记

    一. 算法概述 本文提出的SSD算法是一种直接预测目标类别和bounding box的多目标检测算法.与faster rcnn相比,该算法没有生成 proposal 的过程,这就极大提高了检测速度.针 ...

  6. 转 SSD论文解读

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/u010167269/article/det ...

  7. SSD论文学习

    SSD: Single Shot MultiBox Detector——目标检测 参考https://blog.csdn.net/u010167269/article/details/52563573 ...

  8. ssd论文解读

    https://www.sohu.com/a/168738025_717210 https://www.cnblogs.com/lillylin/p/6207292.html https://blog ...

  9. ssd算法论文理解

    这篇博客主要是讲下我在阅读ssd论文时对论文的理解,并且自行使用pytorch实现了下论文的内容,并测试可以用. 开篇放下论文地址https://arxiv.org/abs/1512.02325,可以 ...

随机推荐

  1. MySQL Cluster测试过程中的错误汇总--ERROR 1296 (HY000)等等

    参考资料: http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-privilege-distribution.html http://www.cl ...

  2. ajax表单提交插件jquery.form.js的运用

    该插件提交的数据包含上传的图片. 1.先导入jquery.form.js 2.form表单的元素: <form id="form2_form" method="po ...

  3. Sync FrameWork 文件同步 (源码)

    Sync Framework 是一个功能完善的同步平台,实现了应用程序.服务和设备的协作和脱机访问.Sync Framework 提供了一些可支持在脱机状态下漫游.共享数据和获取数据的技术 和工具.通 ...

  4. 手把手教你使用UICollectionView写公司的项目

    在很多app中都有这样通用的页面,一直没有机会使用UICollectionView,只是简单的看过他的使用方法.今天公司美工出图,使用了他,并且遇到了好多的坑.记录一下过程,不确定使用的方法是不是最优 ...

  5. DHCP服务自动分配IP地址原理

    转载自:http://blog.csdn.net/lycb_gz/article/details/8499559 DHCP在提供服务时,DHCP客户端是以UDP 68号端口进行数据传输的,而DHCP服 ...

  6. android开发之路02(浅谈BroadcastReceiver)

    一.BroadcastReceiver (广播接收者)的作用是用来接收来自系统和应用中的广播.应用如下: 1.开机完成后系统会产生一条广播----->接收到这条广播就能实现开机启动服务的功能: ...

  7. git - 版本控制器(本地仓库)

    本地创建仓库,然后进行管理.提交到本地仓库(不需要网络),提交到远程仓库(需要网络) 相对于svn为克隆方式,赋值的是整个仓库,svn只是复制的代码.   1.电脑新创建一个”本地仓库”空文件夹 2. ...

  8. 几本关于PHP安全的书

    几本关于PHP安全的书: Essential PHP Security php architect‘s Guide to PHP Security Pro PHP Security Securing ...

  9. 网站压力测试工具webbench 安装与使用

    webbench最多可以模拟3万个并发连接去测试网站的负载能力,个人感觉要比Apache自带的ab压力测试工具好用,安装使用也特别方便,并且非常小. 主要是 -t 参数用着比较爽,下面参考了张宴的文章 ...

  10. D3中path各指令的含义

    svg.append('path').attr({ id: 'mypath', d: 'M50 100Q350 50 350 250Q250 50 50 250' }) path 的指令有: 指令 参 ...