SSD论文优秀句子
1. Nonvolatile memory(e.g., Phase Change Memory) blurs the boundary between memory and storage and it could greatly facilitate the construction of in-memory durable data structures. Data structures can be processed and stored directly in NVRAM. To XXX, YYY is a widely adopted mechanism. However, XXXXXXXX. By leveraging the XXXXX, we can YYYYYY. We tested our YYYYYY. Experiment results show that ZZZZZZZ, which can help extend the lifetime of NVRAM and improve performance.
2. By enabling efficient XXXX, YYY serve as the foundation for ZZZ. For example: By enabling efficient insertions, point lookups, and range queries, key-value stores serve as the foundation for this growing group of important applications.
3. For write-intensive workloads, key-value stores based on Log-Structured Merge-Trees(LSM-trees)[1] have become the state of the art. Various distributed and local stores built on LSM-trees are widely deployed in large-scale production environments, such as BigTable [2] and LevelDB [3] at Google, Cassandra [4], HBase [5] and RocksDB [6] at Facebook, and Riak [7] at Basho. The main advantage of LSM-trees over other indexing structures (such as B-trees) is that they maintain sequential access patterns for writes. Small updates on B-trees may involve many random writes, and are hence not efficient on either solid-state storage devices or hard-disk drives.
-----
Reference
[1] Patrick ONeil, Edward Cheng, Dieter Gawlick, and Elizabeth ONeil. The Log-Structured MergeTree (LSM-tree). Acta Informatica, 33(4):351–385, 1996.
[2] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Michael Burrows, Tushar Chandra, Andrew Fikes, and Robert Gruber. Bigtable: A Distributed Storage System for Structured Data. In Proceedings of the 7th Symposium on Operating Systems Design and Implementation (OSDI ’06), pages 205–218, Seattle, Washington, November 2006.
[3] Sanjay Ghemawat and Jeff Dean. LevelDB. http://code.google.com/p/leveldb, 2011.
[4] Avinash Lakshman and Prashant Malik. Cassandra – A Decentralized Structured Storage System. In The 3rd ACM SIGOPS International Workshop on Large Scale Distributed Systems and Middleware, Big Sky Resort, Montana, Oct 2009.
[5] Tyler Harter, Dhruba Borthakur, Siying Dong, Amitanand Aiyer, Liyin Tang, Andrea C. ArpaciDusseau, and Remzi H. Arpaci-Dusseau. Analysis of HDFS Under HBase: A Facebook Messages Case Study. In Proceedings of the 12th
USENIX Symposium on File and Storage Technologies (FAST ’14), Santa Clara, California, February 2014.
[6] Facebook. RocksDB. http://rocksdb.org/, 2013.
[7] Riak. http://docs.basho.com/riak/, 2015.
[8]
SSD论文优秀句子的更多相关文章
- 深度学习 目标检测算法 SSD 论文简介
深度学习 目标检测算法 SSD 论文简介 一.论文简介: ECCV-2016 Paper:https://arxiv.org/pdf/1512.02325v5.pdf Slides:http://w ...
- SSD论文理解
SSD论文贡献: 1. 引入了一种单阶段的检测器,比以前的算法YOLO更准更快,并没有使用RPN和Pooling操作: 2. 使用一个小的卷积滤波器应用在不同的feature map层从而预测BB的类 ...
- 翻译SSD论文(Single Shot MultiBox Detector)
转自http://lib.csdn.net/article/deeplearning/53059 作者:Ai_Smith 本文翻译而来,如有侵权,请联系博主删除.未经博主允许,请勿转载.每晚泡脚,闲来 ...
- 深度学习笔记(七)SSD 论文阅读笔记简化
一. 算法概述 本文提出的SSD算法是一种直接预测目标类别和bounding box的多目标检测算法.与faster rcnn相比,该算法没有生成 proposal 的过程,这就极大提高了检测速度.针 ...
- 深度学习笔记(七)SSD 论文阅读笔记
一. 算法概述 本文提出的SSD算法是一种直接预测目标类别和bounding box的多目标检测算法.与faster rcnn相比,该算法没有生成 proposal 的过程,这就极大提高了检测速度.针 ...
- 转 SSD论文解读
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/u010167269/article/det ...
- SSD论文学习
SSD: Single Shot MultiBox Detector——目标检测 参考https://blog.csdn.net/u010167269/article/details/52563573 ...
- ssd论文解读
https://www.sohu.com/a/168738025_717210 https://www.cnblogs.com/lillylin/p/6207292.html https://blog ...
- ssd算法论文理解
这篇博客主要是讲下我在阅读ssd论文时对论文的理解,并且自行使用pytorch实现了下论文的内容,并测试可以用. 开篇放下论文地址https://arxiv.org/abs/1512.02325,可以 ...
随机推荐
- Android虚拟环境的工具集Genymotion完整安装教程
Genymotion提供Android虚拟环境的工具集.相信很多Android开发者一定受够了速度慢.体验差效率及其地下的官方模拟器了.如果你没有物理机器,又不想忍受官方模拟器的折磨,Genymoti ...
- 未定义标识符_ConnectionPtr
我的编译环境 vs2010 你会明白的图片,那么多 无用!
- iOS开发——数据持久化Swift篇&SettingBundle
SettingBundle import UIKit class ViewController: UIViewController { var userDefault = NSUserDefaults ...
- Nginx模块开发入门
前言 Nginx是当前最流行的HTTP Server之一,根据W3Techs的统计,目前世界排名(根据Alexa)前100万的网站中,Nginx的占有率为6.8%.与Apache相比,Nginx在高并 ...
- javascript中的 "=="
对象之间比较比较的是引用地址 对象和其他比较,转成字符串 字符串和数字比较,字符串转成数字 布尔值和任何比较,转成数字 undefined == null NaN 和谁都不相等 javascript权 ...
- java_Hashtable实例
package ming; import java.util.Hashtable; class D { int count; public D(int count) { this.count = co ...
- iOS 如何进行逆向工程
原文:http://www.zhihu.com/question/20317296 季逸超,Peak-Labs创始人/CEO,猛犸浏览器.Rasgue- 有幸被邀请回答,不过不知道您要了解的'系统机制 ...
- Java + MongoDB Hello World Example--转载
原文地址:http://www.mkyong.com/mongodb/java-mongodb-hello-world-example/ A simple Java + MongoDB hello w ...
- servlet 容器,工作原理,优缺点
转自http://blog.sina.com.cn/s/blog_b5a157500101ld71.html servlet:是以java技术为基础,应用于服务器端的程序组件,本质就是java代码,用 ...
- CSS——选择器
css选择器 css选择器可分为:标签(元素)选择器,ID选择器,类选择器,属性选择器,后代选择器,子代选择器,相邻兄弟选择器和兄弟选择器.... 标签选择器: //E{attr:value;attr ...