题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=51253

【思路】

固定流量的最小费用流。

拆点,将u拆分成u1和u2,连边(u1,u2,1,0)表示只能经过该点一次。跑流量为2的最小费用流。

【代码】

 #include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#define FOR(a,b,c) for(int a=(b);a<(c);a++)
using namespace std; const int maxn = +;
const int INF = 1e9; struct Edge{ int u,v,cap,flow,cost;
}; struct MCMF {
int n,m,s,t;
int inq[maxn],a[maxn],d[maxn],p[maxn];
vector<int> G[maxn];
vector<Edge> es; void init(int n) {
this->n=n;
es.clear();
for(int i=;i<n;i++) G[i].clear();
}
void AddEdge(int u,int v,int cap,int cost) {
es.push_back((Edge){u,v,cap,,cost});
es.push_back((Edge){v,u,,,-cost});
m=es.size();
G[u].push_back(m-);
G[v].push_back(m-);
} bool SPFA(int s,int t,int flowlimit,int& flow,int& cost) {
for(int i=;i<n;i++) d[i]=INF;
memset(inq,,sizeof(inq));
d[s]=; inq[s]=; p[s]=; a[s]=INF;
queue<int> q; q.push(s);
while(!q.empty()) {
int u=q.front(); q.pop(); inq[u]=;
for(int i=;i<G[u].size();i++) {
Edge& e=es[G[u][i]];
int v=e.v;
if(e.cap>e.flow && d[v]>d[u]+e.cost) {
d[v]=d[u]+e.cost;
p[v]=G[u][i];
a[v]=min(a[u],e.cap-e.flow); //min(a[u],..)
if(!inq[v]) { inq[v]=; q.push(v);
}
}
}
}
if(d[t]==INF) return false;
if(flow+a[t] > flowlimit) a[t] = flowlimit-flow;
flow+=a[t] , cost+=a[t]*d[t];
for(int x=t; x!=s; x=es[p[x]].u) {
es[p[x]].flow+=a[t]; es[p[x]^].flow-=a[t];
}
return true;
}
int Mincost(int s,int t,int flowlimit,int& cost) {
int flow=; cost=;
while(flow<flowlimit && SPFA(s,t,flowlimit,flow,cost)) ;
return flow;
}
} mc; int n,m; int main() {
while(scanf("%d%d",&n,&m)==) {
mc.init(n+n);
int u,v,w;
FOR(i,,m) {
scanf("%d%d%d",&u,&v,&w);
u--,v--;
mc.AddEdge(n+u,v,,w);
}
FOR(i,,n) mc.AddEdge(i,n+i,,);
int cost,flow;
flow=mc.Mincost(n+,n-,,cost);
printf("%d\n",cost);
}
return ;
}

UVa1658 Admiral(拆点法+最小费用流)的更多相关文章

  1. UVA1658 Admiral 拆点法解决结点容量(路径不能有公共点,容量为1的时候) 最小费用最大流

    /** 题目:UVA1658 Admiral 链接:https://vjudge.net/problem/UVA-1658 题意:lrj入门经典P375 求从s到t的两条不相交(除了s和t外,没有公共 ...

  2. UVa 1658 (拆点法 最小费用流) Admiral

    题意: 给出一个有向带权图,求从起点到终点的两条不相交路径使得权值和最小. 分析: 第一次听到“拆点法”这个名词. 把除起点和终点以外的点拆成两个点i和i',然后在这两点之间连一条容量为1,费用为0的 ...

  3. UVA 1658 海军上将(拆点法+最小费用限制流)

    海军上将 紫书P375 这题我觉得有2个难点: 一是拆点,要有足够的想法才能把这题用网络流建模,并且知道如何拆点. 二是最小费用限制流,最小费用最大流我们都会,但如果限制流必须为一个值呢?比如这题限制 ...

  4. uva1658 admiral

    费用流. 裸的拆点最小费用流,一跑就行. 核弹预警,为何wa20多发.build函数一定要返回true...... 太可怕了 #include<cstdio> #include<al ...

  5. poj3422 拆点法x->x'建立两条边+最小费用最大流

    /** 题目:poj3422 拆点法+最小费用最大流 链接:http://poj.org/problem?id=3422 题意:给定n*n的矩阵,含有元素值,初始sum=0.每次从最左上角开始出发,每 ...

  6. Acme Corporation UVA - 11613 拆点法+最大费用最大流(费用取相反数)+费用有正负

    /** 题目:Acme Corporation UVA - 11613 拆点法+最大费用最大流(费用取相反数)+费用有正负 链接:https://vjudge.net/problem/UVA-1161 ...

  7. Risk UVA - 12264 拆点法+最大流+二分 最少流量的节点流量尽量多。

    /** 题目:Risk UVA - 12264 链接:https://vjudge.net/problem/UVA-12264 题意:给n个点的无权无向图(n<=100),每个点有一个非负数ai ...

  8. UVA1349 Optimal Bus Route Design 拆点法+最小费用最佳匹配

    /** 题目:UVA1349 Optimal Bus Route Design 链接:https://vjudge.net/problem/UVA-1349 题意:lrj入门经典P375 给n个点(n ...

  9. 紫书 习题 11-4 UVa 1660 (网络流拆点法)

    这道题改了两天-- 因为这道题和节点有关, 所以就用拆点法解决节点的容量问题. 节点拆成两个点, 连一条弧容量为1, 表示只能经过一次. 然后图中的弧容量无限. 然后求最小割, 即最大流, 即为答案. ...

随机推荐

  1. [转]mysql 导入导出数据库以及函数、存储过程的介绍

    本篇文章是对mysql中的导入导出数据库命令以及函数.存储过程进行了详细的分析介绍,需要的朋友参考下: mysql常用导出数据命令:1.mysql导出整个数据库  mysqldump -hhostna ...

  2. SpringMVC4+thymeleaf3的一个简单实例(篇四:form表单数据验证)

    关于表单数据验证有很多中方法,这里我仅介绍JSR303注解验证.JSR303仅仅是一个规范,这里我们要用到它的一个实现:hibernate-validator. 注意在spring的配置文件sprin ...

  3. WordPress防暴力破解:安全插件和用.htpasswd保护WordPress控制面板

    正在用Wordpress的博主们一定知道最近全球兴起的一波黑客锁定Wordpress暴力破解控制面板密码的风波了,据CloudFlare执行长Matthew Prince所说,所谓的暴力密码攻击是输入 ...

  4. 入门5:PHP 语法基础——流程控制

    一.if...else 语句 if( ) else{ } 如果 .... 就.... 否则.... if(判断){ 判断成立 则执行该表达式 }else{ 如果上方判断都不成立 则执行该表达式 } i ...

  5. sql2000

    sql 2000简体中文企业版下载(含SP3 SP4 下载地址)安装图解及sp4安装教程图解 2012-07-17 16:24:37|  分类: mssql数据库|字号 订阅     sql 2000 ...

  6. how to use a xml_id in field domain

    "[('parent_id','child_of', %(other_module.xml_id)d)]"

  7. Python Tutorial 学习(二)--Using the Python Interpreter

    Using the Python Interpreter 2.1. Invoking the Interpreter The Python interpreter is usually install ...

  8. uboot环境变量分析

    uboot的环境变量在程序的运行和调试过程中都发挥着比较重要的作用. 一.环境变量 可以理解为全局变量,但是他的生命周期比全局变量要长,当程序已经结束运行时,全局变量就会消亡,但是环境变量在下次上电运 ...

  9. springtest+juint开发测试如下:

    项目结构目录如下: UserMapper.java 为接口文件.User 为实体类.UserMapper.xml 为对应mybatis的xml文件.test为对应的测试包 applicationtes ...

  10. BZOJ 1029 建筑抢修

    Description 小刚在玩JSOI提供的一个称之为“建筑抢修”的电脑游戏:经过了一场激烈的战斗,T部落消灭了所有z部落的入侵者.但是T部落的基地里已经有N个建筑设施受到了严重的损伤,如果不尽快修 ...