Search for:  

Gabor Filters : A Practical Overview

In this tutorial, we shall discuss Gabor filters, a classic technique, from a practical perspective.

Do not panic on seeing the equation that follows. It has been included here as a mere formality.

In the realms of image processing and computer vision, Gabor filters are generally used in texture analysis, edge detection, feature extraction, disparity estimation (in stereo vision), etc. Gabor filters are special classes of bandpass filters, i.e., they allow a certain ‘band’ of frequencies and reject the others.

In the course of this tutorial, we shall first discuss the essential results that we obtain when Gabor filters are applied on images. Then we move on to discuss the different parameters that control the output of the filter. This tutorial is aimed at delivering a practical overview of Gabor filters; hence, theoretical treatment is omitted (a tutorial that provides the essential theoretical rigor is currently in the pipeline).

At each stage of the discussion, results of relevant filters have been displayed. The implementation, though contained in the tutorial itself, draws heavily from the Python script that comes along with OpenCV. It has been simplified further so that it is simple for the beginners to work with.

To start with, Gabor filters are applied to images pretty much the same way as are conventional filters. We have a mask (a more precise (cooler) term for it would be ‘convolution kernel’) that represents the filter. By a mask, we mean to say that we have an array (usually a 2D array since 2D images are involved) of pixels in which each pixel is assigned a value (call it a ‘weight’). This array is slid over every pixel of the image and a convolution operation is performed (you can refer to the following link for more information on how a mask is applied to an image. http://en.wikipedia.org/wiki/Kernel_(image_processing) ).

When a Gabor filter is applied to an image, it gives the highest response at edges and at points where texture changes. The following images show a test image and its transformation after the filter is applied.

Sample input to the Gabor filter

Output of the Gabor filter

A Gabor filter responds to edges and texture changes. When we say that a filter responds to a particular feature, we mean that the filter has a distinguishing value at the spatial location of that feature (when we’re dealing with applying convolution kernels in spatial domain, that is. The same holds for other domains, such as frequency domains, as well).

There are certain parameters that affect the output of a Gabor filter. In OpenCV Python, following is the structure of the function that is used to create a Gabor kernel.

cv2.getGaborKernel(ksize, sigma, theta, lambda, gamma, psi, ktype)

Each parameter is described very briefly in the OpenCV docs ( http://docs.opencv.org/trunk/modules/imgproc/doc/filtering.html ). Here’s a brief introduction to each of these parameters.

ksize is the size of the Gabor kernel. If ksize = (a, b), we then have a Gabor kernel of size a x b pixels. As with many other convolution kernels, ksize is preferably odd and the kernel is a square (just for the sake of uniformity).

sigma is the standard deviation of the Gaussian function used in the Gabor filter.

theta is the orientation of the normal to the parallel stripes of the Gabor function.

lambda is the wavelength of the sinusoidal factor in the above equation.

gamma is the spatial aspect ratio.

psi is the phase offset.

ktype indicates the type and range of values that each pixel in the Gabor kernel can hold.

Now that we’ve got a quaint feel of what each parameter means, let us delve deeper and understand the practical implication of the variation of each of these parameters.

The Code

This is a simplified version of gabor_threads.py, which is available in the OpenCV Python library. ( https://github.com/Itseez/opencv/blob/master/samples/python2/gabor_threads.py )

#!/usr/bin/env python

import numpy as np
import cv2 def build_filters():
filters = []
ksize = 31
for theta in np.arange(0, np.pi, np.pi / 16):
kern = cv2.getGaborKernel((ksize, ksize), 4.0, theta, 10.0, 0.5, 0, ktype=cv2.CV_32F)
kern /= 1.5*kern.sum()
filters.append(kern)
return filters def process(img, filters):
accum = np.zeros_like(img)
for kern in filters:
fimg = cv2.filter2D(img, cv2.CV_8UC3, kern)
np.maximum(accum, fimg, accum)
return accum if __name__ == '__main__':
import sys print __doc__
try:
img_fn = sys.argv[1]
except:
img_fn = 'test.png' img = cv2.imread(img_fn)
if img is None:
print 'Failed to load image file:', img_fn
sys.exit(1) filters = build_filters() res1 = process(img, filters)
cv2.imshow('result', res1)
cv2.waitKey(0)
cv2.destroyAllWindows()

ksize

On varying ksize, the size of the convolution kernel varies. In the code above we modify the parameter ksize, while keeping the kernel square and of an odd size. We observe that there is no effect of the size of the convolution kernel on the output image. This also implies that the convolution kernel is scale invariant, since scaling the kernel’s size is analogous to scaling the size of the image. Here are a few results with varying ksize. For all the following images, sigma = 4.0, theta = 0, lambd = 10.0, gamma = 0.5, psi = 0, and ktype = cv2.CV_32F (i.e., each pixel of the convolution kernel holds a weight which is a 32-bit floating point number).

Input Image

ksize = 31 x 31

ksize = 51 x 51

ksize = 151 x 151

ksize = 531 x 531

(Roll over the images to view more information about each of them).

sigma

This parameter controls the width of the Gaussian envelope used in the Gabor kernel. Here are a few results obtained by varying this parameter.

sigma = 2

sigma = 3

sigma = 4

sigma = 5

sigma = 6

theta

This is perhaps one of the most important parameters of the Gabor filter. This parameter decides what kind of features the filter responds to. For example, giving theta a value of zero means that the filter is responsive only to horizontal features only. So, in order to obtain features at various angles in an image, we divide the interval between 0 and 180 into 16 equal parts, and compute a Gabor kernel for each value of theta thus obtained. Note that we’ve chosen 16 just because it was the default value in the OpenCV implementation. These parameter values could be modified to suit specific purposes. Following are the results of varying theta on the above input image.

theta = 11.25

theta = 22.5

theta = 33.75

theta = 45

theta = 56.25

theta = 67.5

theta = 78.75

theta = 90

theta = 101.25

theta = 112.5

theta = 123.75

theta = 135

theta = 146.25

theta = 157.5

theta = 168.75

theta = 180

lambda

Here’s the variation with lambda (theta is set to zero).

lambda = 8

lambda = 9

lambda = 10

lambda = 11

lambda = 12

gamma

Gamma controls the ellipticity of the gaussian. When gamma = 1, the gaussian envelope is circular.

gamma = 0.3

gamma = 0.4

gamma = 0.5

gamma = 0.6

gamma = 0.7

gamma = 1.0

psi

This parameter controls the phase offset.

psi = 0

psi = 10

psi = 50

psi = 90

So, we’ve examined the observable effects of various parameters on the output of the Gabor filter. Hope this tutorial helped. Will be back with more of such tuts soon.

原文地址:https://cvtuts.wordpress.com/2014/04/27/gabor-filters-a-practical-overview/

【转】Gabor 入门的更多相关文章

  1. dennis gabor 从傅里叶(Fourier)变换到伽柏(Gabor)变换再到小波(Wavelet)变换(转载)

    dennis gabor 题目:从傅里叶(Fourier)变换到伽柏(Gabor)变换再到小波(Wavelet)变换 本文是边学习边总结和摘抄各参考文献内容而成的,是一篇综述性入门文档,重点在于梳理傅 ...

  2. Angular2入门系列教程7-HTTP(一)-使用Angular2自带的http进行网络请求

    上一篇:Angular2入门系列教程6-路由(二)-使用多层级路由并在在路由中传递复杂参数 感觉这篇不是很好写,因为涉及到网络请求,如果采用真实的网络请求,这个例子大家拿到手估计还要自己写一个web ...

  3. ABP入门系列(1)——学习Abp框架之实操演练

    作为.Net工地搬砖长工一名,一直致力于挖坑(Bug)填坑(Debug),但技术却不见长进.也曾热情于新技术的学习,憧憬过成为技术大拿.从前端到后端,从bootstrap到javascript,从py ...

  4. Oracle分析函数入门

    一.Oracle分析函数入门 分析函数是什么?分析函数是Oracle专门用于解决复杂报表统计需求的功能强大的函数,它可以在数据中进行分组然后计算基于组的某种统计值,并且每一组的每一行都可以返回一个统计 ...

  5. Angular2入门系列教程6-路由(二)-使用多层级路由并在在路由中传递复杂参数

    上一篇:Angular2入门系列教程5-路由(一)-使用简单的路由并在在路由中传递参数 之前介绍了简单的路由以及传参,这篇文章我们将要学习复杂一些的路由以及传递其他附加参数.一个好的路由系统可以使我们 ...

  6. Angular2入门系列教程5-路由(一)-使用简单的路由并在在路由中传递参数

    上一篇:Angular2入门系列教程-服务 上一篇文章我们将Angular2的数据服务分离出来,学习了Angular2的依赖注入,这篇文章我们将要学习Angualr2的路由 为了编写样式方便,我们这篇 ...

  7. Angular2入门系列教程4-服务

    上一篇文章 Angular2入门系列教程-多个组件,主从关系 在编程中,我们通常会将数据提供单独分离出来,以免在编写程序的过程中反复复制粘贴数据请求的代码 Angular2中提供了依赖注入的概念,使得 ...

  8. wepack+sass+vue 入门教程(三)

    十一.安装sass文件转换为css需要的相关依赖包 npm install --save-dev sass-loader style-loader css-loader loader的作用是辅助web ...

  9. wepack+sass+vue 入门教程(二)

    六.新建webpack配置文件 webpack.config.js 文件整体框架内容如下,后续会详细说明每个配置项的配置 webpack.config.js直接放在项目demo目录下 module.e ...

随机推荐

  1. 一个简单的web服务器例子

    一个简单的web容器小例子,功能十分简单,只能访问静态资源,对于新手来说还是有一定的意义.主要分三个类 1.server类:主要功能开启socketServer,阻塞server,接收socket访问 ...

  2. 2014年10月30日-----SQL的基础知识

    数据库的概念 结构化查询语言:structured query language 简称:SQL 数据库管理系统:database management system 简称:DBMS 数据库管理员:da ...

  3. eclipse EE neon创建dynamic web project时,卡在installing dynamic web module facet,解决办法

    我们在用eclipse EE neon创建dynamic web project时,如果你发现底部状态栏一直卡在installing dynamic web module facet,永远到不了100 ...

  4. hdu 1018 Big Number (数学题)

    Problem Description Inmany applications very large integers numbers are required. Some of theseappli ...

  5. jQuery仿苏宁易购导航

    最近看了些网上的各类导航网站源码,自己学习制作了一个仿苏宁易购的导航栏 jQuery部分代码 $(function(){ $(".CategoryTree>ul>li" ...

  6. C++ 类访问控制(public/protected/private)

    第一:private, public, protected 访问标号的访问范围. private:只能由1.该类中的函数.2.其友元函数访问. 不能被任何其他访问,该类的对象也不能访问. protec ...

  7. ubuntu14.04 开启root登陆

    想要在登录界面使用root身份登录,可编辑/usr/share/lightdm/lightdm.conf.d/50-ubuntu.conf文件, sudo gedit /usr/share/light ...

  8. C#程序中:如何启用进程、结束进程、查找进程

    在启动某个程序之前,如果需要先检查改程序是否已经运行,可以查找进程里有没有这个进程,再根据查找进程后的结果进行相应的判断操作. 产找进程的范围是任务管理器中的进程列表.如果进程被隐藏了,结果……(我没 ...

  9. predis如何实现phpredis的pconnect方法

    predis和phpredis都是redis的php客户端,区别可以看这里,这里不赘述. phpredis是php扩展,由C语言编写,诞生较早,很多PHPer都熟悉. predis是用PHP语言编写, ...

  10. AngularJS测试框架 karma备忘

    AngularJS测试框架karma安装 安装karma $ --save-dev 安装karma组件 $ npm install karma-jasmine karma-chrome-launche ...