bzoj3583: 杰杰的女性朋友 && 4362: Graph
Description
Input
Output
Sample Input
2 5 4 3
7 9 2 4
0 1 5 2
6 3 9 2
2147483647 1000000001 233522 788488
10
1 1 0
2 2 1
2 4 5
4 3 10
3 4 50
1 5 1000
Sample Output
51
170107227
271772358
34562176
890241289
HINT
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cassert>
#include<cstring>
#include<algorithm>
#define maxn 21
#define mod 1000000007
using namespace std;
char ch;
bool ok;
void read(int &x){
for (ok=,ch=getchar();!isdigit(ch);ch=getchar()) if (ch=='-') ok=;
for (x=;isdigit(ch);x=x*+ch-'',ch=getchar());
if (ok) x=-x;
}
int n,m,q,a,b,d;
int out[][maxn],in[maxn][],list[maxn],ans;
struct Matrix{
int v[maxn][maxn];
void init(int op){
for (int i=;i<=m;i++) for (int j=;j<=m;j++) v[i][j]=(i==j)*op;
}
}base,I,emp,tmp,res,sum,last;
Matrix operator+(const Matrix &a,const Matrix &b){
static Matrix c;
c=emp;
for (int i=;i<=m;i++) for (int j=;j<=m;j++) c.v[i][j]=(a.v[i][j]+b.v[i][j])%mod;
return c;
}
Matrix operator*(const Matrix &a,const Matrix &b){
static Matrix c;
c=emp;
for (int i=;i<=m;i++) for (int j=;j<=m;j++) for (int k=;k<=m;k++)
c.v[i][k]=(c.v[i][k]+1LL*a.v[i][j]*b.v[j][k])%mod;
return c;
}
void solve(int n){//1+a+a^2+a^3+...+a^n
if (n<){res=emp;return;}
Matrix a=base,b=a,v=I,s=I;
for(int i=n;i;i>>=,b=b*(a+I),a=a*a)
if(i&) s=s+b*v,v=v*a;
res=s;
}
int main(){
read(n),read(m),I.init(),emp.init();
for (int i=;i<=n;i++){
for (int j=;j<=m;j++) read(out[i][j]);
for (int j=;j<=m;j++) read(in[j][i]);
}
for (int i=;i<=m;i++) for (int j=;j<=m;j++) base.v[i][j]=;
for (int i=;i<=m;i++) for (int j=;j<=n;j++) for (int k=;k<=m;k++)
base.v[i][k]=(base.v[i][k]+1LL*in[i][j]*out[j][k])%mod;
read(q);
while (q--){
read(a),read(b),read(d);
solve(d-);
for (int i=;i<=m;i++) list[i]=;
for (int i=;i<=m;i++) for (int j=;j<=m;j++) list[j]=(list[j]+1LL*out[a][i]*res.v[i][j])%mod;
ans=;
for (int i=;i<=m;i++) ans=(ans+1LL*list[i]*in[i][b])%mod;
printf("%d\n",ans+(a==b));
}
return ;
}
bzoj3583: 杰杰的女性朋友 && 4362: Graph的更多相关文章
- bzoj3583 杰杰的女性朋友 || bzoj4362 Graph
http://210.33.19.103/problem/2174 很显然是矩阵快速幂的题,设有in和ou矩阵,设in矩阵的转置为in' 显然可以直接暴力求出任意两点间走一步路径条数,然后求其d次幂, ...
- [BZOJ3583]杰杰的女性朋友(矩阵快速幂)
杰杰的女性朋友 时间限制:10s 空间限制:256MB 题目描述 杰杰是魔法界的一名传奇人物.他对魔法具有深刻的洞察力,惊人的领悟力,以及令人叹为观止的创造力.自从他从事魔法竞赛以来,短短几 ...
- BZOJ3583 杰杰的女性朋友 矩阵
原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ3583.html 题目传送门 - BZOJ3583 题意 有一个 $n$ 个点构成的有向图. 对于每一个 ...
- BZOJ3583 : 杰杰的女性朋友
将$I$转置,设$G=OI$,则$ans=G^0+G^1+...+G^d$. 注意到$G^d=O(IO)^{d-1}I$,而$IO$是大小为$k\times k$的矩阵,可以通过倍增在$O(k^3\l ...
- 复旦大学EWP菁英女性课程(复旦卓越女性课程改版后第一期) _复旦大学、女性课程、高级研修班、心理学、EWP_培训通课程
复旦大学EWP菁英女性课程(复旦卓越女性课程改版后第一期) _复旦大学.女性课程.高级研修班.心理学.EWP_培训通课程 复旦大学EWP菁英女性课程(复旦卓越女性课程改版后第一期) 学 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- cojs QAQ的矩阵 题解报告
题目描述非常的清晰 首先我们考虑(A*B)^m的求法,这个部分可以参考BZOJ 杰杰的女性朋友 我们不难发现(A*B)^m=A*(B*A)^(m-1)*B A*B是n*n的矩阵,而B*A是k*k的矩阵 ...
- qbxt五一数学Day1
目录 I. 基础知识 1. 带余除法(小学) 1. 定义 2. 性质 2. 最大公约数(gcd)/ 最小公倍数(lcm) 1. 定义 2. 性质 3. 高精度 II. 矩阵及其应用 1. 定义 2. ...
- DOM实战
作者声明:本博客中所写的文章,都是博主自学过程的笔记,参考了很多的学习资料,学习资料和笔记会注明出处,所有的内容都以交流学习为主.有不正确的地方,欢迎批评指正 视频来源:https://www.bil ...
随机推荐
- codeforces 710C
C. Magic Odd Square time limit per test 1 second memory limit per test 256 megabytes input standard ...
- bzoj3673 bzoj3674可持久化并查集
并查集都写不来了qwq 之前写的是错的 sz的初值都是0,这样怎么加就都是0了,水这道题还是可以,但是加强版就过不了了 #include<cstdio> #include<cstri ...
- OC封装的TLV数据格式解析库
作者:朱克锋 邮箱:zhukefeng@iboxpay.com 转载请注明出处:http://blog.csdn.net/linux_zkf TLV是一种可变格式,意思就是: Type类型, Leng ...
- 用Autohotkey让powerpoint幻灯片一直播放
有台电脑专门接了个大电视循环播放一个幻灯片,但是有时候会弹出一些对话框,比如windows要更新之类的,这样的话powerpoint就不是active的进城了,这样幻灯片就会停下来,还需要人去手动点一 ...
- 华为EC169在MAC 10.9.6下的安装方法
[问题描述] 华为EC169 3G上网卡需要在mbp中安装驱动. 华为官网(http://consumer.huawei.com/cn/)直接搜索EC169,会发现最新的驱动也是2009年发布. 下载 ...
- 【iOS】iOS之Button segue弹出popOver消除(dismiss)问题
如图.由于程序须要,点击Button Ctrl+Dragging加入了一个UITableViewController,当然其余的Controller也能够,这样我们在方法 -(void)prepare ...
- Apache让一台虚拟主机接受多域名解析(转)
之前写了一篇文章关于linux下apache虚拟主机配置,配置那是相当简单: <VirtualHost *:80> ServerAdmin admin@example.com Docume ...
- 用 Qt 中的 QDomDocument类 处理 XML 文件(上)
我们可以看到,如果所要读取的XML文件不是很大,采用DOM读取方法还是很便捷的,由于我用的也是DOM树读取的方法,所以,本文所介绍的也主要是基于DOM的方法读取. 根据常用的操作,我简单的把对XM ...
- 第八条——覆盖equals方法时需遵守的通用约定
1)自反性 对于任何非null的引用值x,x.equals(x)必须返回true.---这一点基本上不会有啥问题 2)对称性 对于任何非null的引用值x和y,当且仅当x.equals(y)为true ...
- 在Eclipse中显示空格(space)和制表符(tab)
显示空格(space)和制表符(tab)设置: Window->Preferences->General->Editors->Text Editors->Show whi ...