题意:求所有小于等于n的,x,y&&lcm(x,y)==n的个数

分析:因为n是最小公倍数,所以x,y都是n的因子,而且满足这样的因子必须保证互质,由于n=1e14,所以最多大概在2^13个因子 即8000多因子

所以每次可以递归暴力寻找一个因子,然后选好了以后,看唯一分解不同种素数还有哪种没有用,符合条件的只能用这些没有用过的,然后直接统计

注:由于最终每个对都被统计了两次,所以/2,由于本身也算一对,所以+1

代码:

#include <cstdio>
#include <iostream>
#include <ctime>
#include <vector>
#include <cmath>
#include <map>
#include <queue>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long LL;
const int N=1e7+;
const int INF=0x3f3f3f3f;
int cnt;
bool v[N];
LL prime[];
void getprime(){
for(int i=;i*i<=N-;++i)
if(!v[i])
for(int j=i*i;j<=N-;j+=i)
v[j]=;
for(int i=;i<=N-;++i)
if(!v[i])prime[++cnt]=i;
}
int ans;
vector<LL>g,c;
bool vis[];
void dfs(int pos,LL res){
if(pos==g.size()){
int tmp=;
for(int i=;i<g.size();++i){
if(vis[i])continue;
tmp*=(c[i]+);
}
ans+=tmp;
return;
}
dfs(pos+,res);
vis[pos]=;
for(LL i=,k=g[pos];i<=c[pos];++i,k*=g[pos])
dfs(pos+,res*k);
vis[pos]=;
return;
}
int main()
{
getprime();
int cas=,T;
scanf("%d",&T);
while(T--){
LL t,n;
scanf("%lld",&n),t=n;
g.clear(),c.clear();
for(int i=;i<=cnt&&prime[i]*prime[i]<=t;++i){
if(t%prime[i])continue;
int tot=;
g.push_back(prime[i]);
while(t%prime[i]==)t/=prime[i],++tot;
c.push_back(tot);
}
if(t>)g.push_back(t),c.push_back();
ans=;
dfs(,);
printf("Case %d: %d\n",++cas,(ans>>)+);
}
return ;
}

LightOJ 1236 Pairs Forming LCM 合数分解的更多相关文章

  1. LightOJ 1236 Pairs Forming LCM (LCM 唯一分解定理 + 素数筛选)

    http://lightoj.com/volume_showproblem.php?problem=1236 Pairs Forming LCM Time Limit:2000MS     Memor ...

  2. LightOJ 1236 - Pairs Forming LCM(素因子分解)

    B - Pairs Forming LCM Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu ...

  3. LightOj 1236 - Pairs Forming LCM (分解素因子,LCM )

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1236 题意:给你一个数n,求有多少对(i,  j)满足 LCM(i, j) = n, ...

  4. LightOJ 1236 Pairs Forming LCM【整数分解】

    题目链接: http://lightoj.com/login_main.php?url=volume_showproblem.php?problem=1236 题意: 找与n公倍数为n的个数. 分析: ...

  5. LightOJ - 1236 - Pairs Forming LCM(唯一分解定理)

    链接: https://vjudge.net/problem/LightOJ-1236 题意: Find the result of the following code: long long pai ...

  6. LightOj 1236 Pairs Forming LCM (素数筛选&&唯一分解定理)

    题目大意: 有一个数n,满足lcm(i,j)==n并且i<=j时,(i,j)有多少种情况? 解题思路: n可以表示为:n=p1^x1*p2^x1.....pk^xk. 假设lcm(a,b) == ...

  7. 1236 - Pairs Forming LCM

    1236 - Pairs Forming LCM   Find the result of the following code: long long pairsFormLCM( int n ) {  ...

  8. Light oj 1236 - Pairs Forming LCM (约数的状压思想)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1236 题意很好懂,就是让你求lcm(i , j)的i与j的对数. 可以先预处理1e7以 ...

  9. 1236 - Pairs Forming LCM -- LightOj1236 (LCM)

    http://lightoj.com/volume_showproblem.php?problem=1236 题目大意: 给你一个数n,让你求1到n之间的数(a,b && a<= ...

随机推荐

  1. Yii 关于 find findAll 查找出制定的字段的方法

    总所周知 modelName::model() -> find() //找出的是一个对象 modelName::model() -> findALL() //找出的是一个对象集合的数组 如 ...

  2. xps文档打印后winform界面文字丢失

    最近做的xps文档打印功能,绝对的一波三折,一开始开发的时候,始终用的是xps writer 虚拟打印机,测试的时候也是,一直没有发现问题,但是真正到用户使用的时候,接上正式打印机,打印时候没有问题, ...

  3. 组织http请求

    post方式 string stratTime=""; string end=""://要拼接的参数 string postURL = "http:/ ...

  4. 常见CSS注意问题

    1. 初始化css 有哪些 因 为浏览器的品种很多,每个浏览器的默认样式也是不同的,比如<button>标签,在IE浏览器.Firefox浏览器以及Safari浏览 器中的样式都是不同的, ...

  5. 阿里云服务器centos5.10安装lamp环境

    ==相关命令== 查看linux版本:cat /etc/redhat-release ==配置修改== 一.Apache配置 ------------------------------------- ...

  6. Python 的格式化字符串format函数

    阅读mattkang在csdn中的博客<飘逸的python - 增强的格式化字符串format函数>所做笔记 自从python2.6开始,新增了一种格式化字符串的函数str.format( ...

  7. 上传图片+浏览+裁切 Demo(无后台处理部分)

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. linux系统管理

    系统 # uname -a               # 查看内核/操作系统/CPU信息# head -n 1 /etc/issue   # 查看操作系统版本# cat /proc/cpuinfo  ...

  9. 【Base64】JDK里面实现Base64的API

    原文出处: 成熟的毛毛虫的博客 BASE64 编码是一种常用的字符编码,在很多地方都会用到.但base64不是安全领域下的加密解密算法.能起到安全作用的效果很差,而且很容易破解,他核心作用应该是传输数 ...

  10. Random.Next获取随即数

    Random random = new Random(); random.Next()--------------返回非负的一个随机数. random.Next(int  maxValue)----- ...