AC Challenge

  • 30.04%
  • 1000ms
  • 128536K
 

Dlsj is competing in a contest with n (0 < n \le 20)n(0<n≤20) problems. And he knows the answer of all of these problems.

However, he can submit ii-th problem if and only if he has submitted (and passed, of course) s_isi​ problems, the p_{i, 1}pi,1​-th, p_{i, 2}pi,2​-th, ......, p_{i, s_i}pi,si​​-th problem before.(0 < p_{i, j} \le n,0 < j \le s_i,0 < i \le n)(0<pi,j​≤n,0<j≤si​,0<i≤n) After the submit of a problem, he has to wait for one minute, or cooling down time to submit another problem. As soon as the cooling down phase ended, he will submit his solution (and get "Accepted" of course) for the next problem he selected to solve or he will say that the contest is too easy and leave the arena.

"I wonder if I can leave the contest arena when the problems are too easy for me."
"No problem."
—— CCF NOI Problem set

If he submits and passes the ii-th problem on tt-th minute(or the tt-th problem he solve is problem ii), he can get t \times a_i + b_it×ai​+bi​ points. (|a_i|, |b_i| \le 10^9)(∣ai​∣,∣bi​∣≤109).

Your task is to calculate the maximum number of points he can get in the contest.

Input

The first line of input contains an integer, nn, which is the number of problems.

Then follows nn lines, the ii-th line contains s_i + 3si​+3 integers, a_i,b_i,s_i,p_1,p_2,...,p_{s_i}ai​,bi​,si​,p1​,p2​,...,psi​​as described in the description above.

Output

Output one line with one integer, the maximum number of points he can get in the contest.

Hint

In the first sample.

On the first minute, Dlsj submitted the first problem, and get 1 \times 5 + 6 = 111×5+6=11 points.

On the second minute, Dlsj submitted the second problem, and get 2 \times 4 + 5 = 132×4+5=13 points.

On the third minute, Dlsj submitted the third problem, and get 3 \times 3 + 4 = 133×3+4=13 points.

On the forth minute, Dlsj submitted the forth problem, and get 4 \times 2 + 3 = 114×2+3=11 points.

On the fifth minute, Dlsj submitted the fifth problem, and get 5 \times 1 + 2 = 75×1+2=7 points.

So he can get 11+13+13+11+7=5511+13+13+11+7=55 points in total.

In the second sample, you should note that he doesn't have to solve all the problems.

样例输入1复制

5
5 6 0
4 5 1 1
3 4 1 2
2 3 1 3
1 2 1 4

样例输出1复制

55

样例输入2复制

1
-100 0 0

样例输出2复制

0

题目来源

ACM-ICPC 2018 南京赛区网络预赛

状压dp。

#include <bits/stdc++.h>
#define MAX 21
typedef long long ll;
using namespace std;
const int INF = 0x3f3f3f3f; ll a[MAX],b[MAX];
ll dp[<<];
vector<int> v[MAX]; int main(void)
{
int n,num,temp,i,j,k;
scanf("%d",&n);
for(i=;i<=n;i++) {
scanf("%lld %lld",&a[i],&b[i]);
scanf("%d",&num);
while(num--) {
scanf("%d",&temp);
v[i].push_back(temp);
}
}
memset(dp,,sizeof(dp));
for(i=;i<(<<n);i++){
int f=;
for(j=;j<=n;j++){
if(!((<<(j-))&i)) continue;
for(k=;k<v[j].size();k++){
if(!((<<(v[j][k]-))&i)){
f=;
break;
}
}
if(f==) break;
}
if(f==) continue;
for(j=;j<=n;j++){
if(!((<<(j-))&i)) continue;
int S=i;
int c=;
while(S){
if(S&) c++;
S>>=;
}
dp[i]=max(dp[i],dp[i^(<<(j-))]+c*a[j]+b[j]);
//printf("(%d %d %d %lld)",i,c,j,dp[i]);
}
}
printf("%lld\n",dp[(<<n)-]);
return ;
}

ACM-ICPC2018南京网络赛 AC Challenge(一维状压dp)的更多相关文章

  1. 南京网络赛E-AC Challenge【状压dp】

    Dlsj is competing in a contest with n (0 < n \le 20)n(0<n≤20) problems. And he knows the answe ...

  2. AC Challenge(状压dp)

    ACM-ICPC 2018 南京赛区网络预赛E: 题目链接https://www.jisuanke.com/contest/1555?view=challenges Dlsj is competing ...

  3. ACM-ICPC 2018 南京赛区网络预赛 E AC Challenge(状压dp)

    https://nanti.jisuanke.com/t/30994 题意 给你n个题目,对于每个题目,在做这个题目之前,规定了必须先做哪几个题目,第t个做的题目i得分是t×ai+bi问最终的最大得分 ...

  4. 2019年第十届蓝桥杯省赛-糖果(一维状压dp)

    看到20的数据量很容易想到状压dp. 开1<<20大小的数组来记录状态,枚举n个糖包,将其放入不同状态中(类似01背包思想) 时间复杂度O(n*(2^20)). import java.u ...

  5. HDU3247 Resource Archiver (AC自动机+spfa+状压DP)

    Great! Your new software is almost finished! The only thing left to do is archiving all your n resou ...

  6. 2013 ACM/ICPC 南京网络赛F题

    题意:给出一个4×4的点阵,连接相邻点可以构成一个九宫格,每个小格边长为1.从没有边的点阵开始,两人轮流向点阵中加边,如果加入的边构成了新的边长为1的小正方形,则加边的人得分.构成几个得几分,最终完成 ...

  7. HDU - 3247 Resource Archiver (AC自动机,状压dp)

    \(\quad\)Great! Your new software is almost finished! The only thing left to do is archiving all you ...

  8. 【noip模拟赛5】细菌 状压dp

    [noip模拟赛5]细菌   描述 近期,农场出现了D(1<=D<=15)种细菌.John要从他的 N(1<=N<=1,000)头奶牛中尽可能多地选些产奶.但是如果选中的奶牛携 ...

  9. HDU 3247 Resource Archiver (AC自动机+BFS+状压DP)

    题意:给定 n 个文本串,m个病毒串,文本串重叠部分可以合并,但合并后不能含有病毒串,问所有文本串合并后最短多长. 析:先把所有的文本串和病毒都插入到AC自动机上,不过标记不一样,可以给病毒标记-1, ...

随机推荐

  1. 2017-2018-1 20179209《Linux内核原理与分析》第二周作业

    本周课业主要通过分析汇编代码执行情况掌握栈的变化.本人本科时期学过intel 80X86汇编语言,所以有一定基础:在Linux中32位AT&T风格的汇编稍微熟悉就可以明白.所以我学习的重点放在 ...

  2. 远程服务器上的weblogic项目管理(一)项目部署与更新流程

    最近接手了项目组的服务器管理工作,服务器以linux系统为主,项目则搭建在weblogic上面,也算是积累了一些远程管理服务器的心得,决定稍微整理一下: windows系统要如何方便地连接到远程服务器 ...

  3. Git you are not allowed to push code to protected branches on this project?

    error: You are not allowed to push code to protected branches on this project....error: failed to pu ...

  4. Linux C语言 网络编程(二) server模型

    前面介绍了关于连接linux服务端方式,可是服务端的资源是有限的,所以我们通常须要又一次思考,设计一套server模型来处理相应的client的请求. 第一种:并发server.通过主进程统一处理cl ...

  5. UVa 10828 Back to Kernighan-Ritchie 高斯消元+概率DP

    题目来源:UVa 10828 Back to Kernighan-Ritchie 题意:从1開始 每次等概率从一个点到和他相邻的点 有向 走到不能走停止 求停止时每一个点的期望 思路:写出方程消元 方 ...

  6. git功能速查

    http://gitbook.liuhui998.com/index.html git rebase:在本地变基.将本地所有的修改应用到另一个分支上 git merge:在本地合并分支 git bra ...

  7. Quartz时SLF4J错误

    SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder". SLF4J: Defaulting to no-o ...

  8. 转载:SPFA算法学习

    转载地址:http://www.cnblogs.com/scau20110726/archive/2012/11/18/2776124.html 粗略讲讲SPFA算法的原理,SPFA算法是1994年西 ...

  9. React之jsx语法特性

    jsx 语法,直接可以在js中使用html标签. 还可以通过花括号的形式,在html标签中,写js表达式. <div> { 1 + 2 } hello,world! </div> ...

  10. springmvc的简单介绍以及springmvc组件的介绍

    Spring web mvc框架 什么是springmvc Springmvc是spring框架的一个模块,spring和springmvc无需中间整合层整合 Springmvc是一个基于mvc的we ...