https://github.com/cloudera/flume/blob/master/flume-docs/src/docs/UserGuide/Introduction

=== Reliability
   
  Reliability, the ability to continue delivering events in the face of
  failures without losing data, is a vital feature of Flume. Large
  distributed systems can and do suffer partial failures in many ways -
  physical hardware can fail, resources such as network bandwidth or
  memory can become scarce, or software can crash or run slowly. Flume
  emphasizes fault-tolerance as a core design principle and keeps
  running and collecting data even when many components have failed.
   
  Flume can guarantee that all data received by an agent node will
  eventually make it to the collector at the end of its flow as long as
  the agent node keeps running. That is, data can be *reliably*
  delivered to its eventual destination.
   
  However, reliable delivery can be very resource intensive and is often
  a stronger guarantee than some data sources require. Therefore, Flume
  allows the user to specify, on a per-flow basis, the level of
  reliability required. There are three supported reliability levels:
   
  * End-to-end
  * Store on failure
  * Best effort
   
  .A Note About Reliability
  ******************
  Although Flume is extremely tolerant to machine, network, and software
  failures, there is never any such thing as '100% reliability'. If all
  the machines in a Flume installation were irrevocably destroyed in
  some terrible data center incident, all copies of Flume's data would
  be lost and there would be no way to recover them. Therefore all of
  Flume's reliability levels make guarantees about data delivery 'until
  some maximum number of failures have occurred'. Flume's failure modes
  - in terms of what can fail and what will keep running if they do -
  are described in detail later in this guide.
  ******************
   
  The *end-to-end* reliability level guarantees that once Flume accepts
  an event, that event will make it to the endpoint - as long as the
  agent that accepted the event remains live long enough. The first
  thing the agent does in this setting is write the event to disk in a
  ''write-ahead log'' (WAL) so that, if the agent crashes and restarts,
  knowledge of the event is not lost. After the event has successfully
  made its way to the end of its flow, an acknowledgment is sent back to
  the originating agent so that it knows it no longer needs to store the
  event on disk. This reliability level can withstand any number of
  failures downstream of the initial agent.
   
  The *store on failure* reliability level causes nodes to only require
  an acknowledgement from the node one hop downstream. If the sending
  node detects a failure, it will store data on its local disk until the
  downstream node is repaired, or an alternate downstream destination
  can be selected. While this is effective, data can be lost if a
  compound or silent failure occurs.
   
  The *best-effort* reliability level sends data to the next hop with no
  attempts to confirm or retry delivery. If nodes fail, any data that
  they were in the process of transmitting or receiving can be
  lost. This is the weakest reliability level, but also the most
  lightweight.
=== Reliability
   
  Reliability, the ability to continue delivering events in the face of
  failures without losing data, is a vital feature of Flume. Large
  distributed systems can and do suffer partial failures in many ways -
  physical hardware can fail, resources such as network bandwidth or
  memory can become scarce, or software can crash or run slowly. Flume
  emphasizes fault-tolerance as a core design principle and keeps
  running and collecting data even when many components have failed.
   
  Flume can guarantee that all data received by an agent node will
  eventually make it to the collector at the end of its flow as long as
  the agent node keeps running. That is, data can be *reliably*
  delivered to its eventual destination.
   
  However, reliable delivery can be very resource intensive and is often
  a stronger guarantee than some data sources require. Therefore, Flume
  allows the user to specify, on a per-flow basis, the level of
  reliability required. There are three supported reliability levels:
   
  * End-to-end
  * Store on failure
  * Best effort
   
  .A Note About Reliability
  ******************
  Although Flume is extremely tolerant to machine, network, and software
  failures, there is never any such thing as '100% reliability'. If all
  the machines in a Flume installation were irrevocably destroyed in
  some terrible data center incident, all copies of Flume's data would
  be lost and there would be no way to recover them. Therefore all of
  Flume's reliability levels make guarantees about data delivery 'until
  some maximum number of failures have occurred'. Flume's failure modes
  - in terms of what can fail and what will keep running if they do -
  are described in detail later in this guide.
  ******************
   
  The *end-to-end* reliability level guarantees that once Flume accepts
  an event, that event will make it to the endpoint - as long as the
  agent that accepted the event remains live long enough. The first
  thing the agent does in this setting is write the event to disk in a
  ''write-ahead log'' (WAL) so that, if the agent crashes and restarts,
  knowledge of the event is not lost. After the event has successfully
  made its way to the end of its flow, an acknowledgment is sent back to
  the originating agent so that it knows it no longer needs to store the
  event on disk. This reliability level can withstand any number of
  failures downstream of the initial agent.
   
  The *store on failure* reliability level causes nodes to only require
  an acknowledgement from the node one hop downstream. If the sending
  node detects a failure, it will store data on its local disk until the
  downstream node is repaired, or an alternate downstream destination
  can be selected. While this is effective, data can be lost if a
  compound or silent failure occurs.
   
  The *best-effort* reliability level sends data to the next hop with no
  attempts to confirm or retry delivery. If nodes fail, any data that
  they were in the process of transmitting or receiving can be
  lost. This is the weakest reliability level, but also the most
  lightweight.

three supported reliability levels: * End-to-end * Store on failure * Best effort的更多相关文章

  1. SignalR Supported Platforms -摘自网络

    SignalR is supported under a variety of server and client configurations. In addition, each transpor ...

  2. store操作

    store.remove(rs); store.sync({ success: function (e, opt) { this.store.commitChanges(); }, failure: ...

  3. extjs 解决使用store.sync()方法更新item有时不触发后台action的问题

    问题描述: extjs 解决使用store.sync()方法更新item有时不触发后台action,不出发后台action的原因是item的字段值没有变化 解决方法: item.setDirty(tr ...

  4. PMP用语集

    AC actual cost 实际成本 ACWP actual cost of work performed 已完工作实际成本 BAC budget at completion 完工预算 BCWP b ...

  5. Solaris10安装配置LDAP(iPlanet Directory Server )

    Solaris10安装光盘自带了iPlanet Directory Server安装包,系统管理员可以利用iPlanet Directory Server在Solaris系统创建一个LDAP Serv ...

  6. memory ordering 内存排序

    Memory ordering - Wikipedia https://en.wikipedia.org/wiki/Memory_ordering https://zh.wikipedia.org/w ...

  7. Web测试介绍2一 安全测试

            安全测试是在IT软件产品的生命周期中,特别是产品开发基本完成到发布阶段,对产品进行检验以验证产品符合安全需求定义和产品质量标准的过程. 主要安全需求包括: (i) 认证 Authent ...

  8. Python 3.6.0的sqlite3模块无法执行VACUUM语句

    Python 3.6.0的sqlite3模块存在一个bug(见issue 29003),无法执行VACUUM语句. 一执行就出现异常: Traceback (most recent call last ...

  9. Flume1.5.0的安装、部署、简单应用(含伪分布式、与hadoop2.2.0、hbase0.96的案例)

    目录: 一.什么是Flume? 1)flume的特点 2)flume的可靠性 3)flume的可恢复性 4)flume 的 一些核心概念 二.flume的官方网站在哪里? 三.在哪里下载? 四.如何安 ...

随机推荐

  1. w3school JavaScript 简介

    JavaScript 简介 转自: http://www.w3school.com.cn/js/js_intro.asp JavaScript 是脚本语言 JavaScript 是一种轻量级的编程语言 ...

  2. FNV与FNV-1a Hash算法说明【转】

    转自:http://blog.csdn.net/jiayanhui2877/article/details/12090575 The core of the FNV hash The core of ...

  3. 快充 IC BQ25896 的 常用參數

    一: POWER-PATH MANAGEMENT (有接 adapter) 1:Vbat > Vsysmin,Isys = 0A, BATFET disable Vsys = Vbat + 50 ...

  4. 转载——Step by Step 创建一个 Web Service

    原创地址:http://www.cnblogs.com/jfzhu/p/4022139.html 转载请注明出处 (一)创建Web Service 创建第一个项目,类型选择ASP.NET Empty ...

  5. 构建伪Update服务器工具isr-evilgrade

    构建伪Update服务器工具isr-evilgrade   现在大部分软件都提供更新功能.软件一旦运行,就自动检查对应的Update服务器.如果发现新版本,就会提示用户,并进行下载和安装.而用户往往相 ...

  6. 第三章 poj 1064——关于带精度的二分法

    /* 题意:给定n个实数l[i],给定一个k 问:求最大的ans,使得sum l[i]/ans i=1 to n >=k,且ans最大*/ #include <iostream> # ...

  7. C# SQL帮助类

    C# SQL帮助类 本人自己封装的SQLHelper类,执行sql server与Oracle数据的增删改查 vs自带的Oracle数据库引用需要安装Oracle客户端,如不想安装Oracle客户端, ...

  8. javascript --- 原型继承与属性拷贝的综合应用

    对于继承来说,主要目标就是将一些现有的功能据为己有.也就是说,我们在新建一个对象的时候,通常首先继承现有对象,然后再为其添加额外的属性和方法. 对此,我们可以通过一个函数调用来完成. 具体而言就是: ...

  9. xcode5 asset catalogs 由于图标尺寸错误导致编译问题解决[原创]

    如下图,即使图片尺寸不规范,xcode5也可以正常预览(这里我提供的尺寸是57*57, 而需要的是120*120) 但编译运行失败,报的错是: Images.xcassets: error: The ...

  10. WebLogic 11g重置用户密码

    weblogic安装后,很久不用,忘记访问控制台的用户名或者密码,可通过以下步骤来重置用户名密码. 版本:WebLogic Server 11g 说明:%DOMAIN_HOME%:指WebLogic ...