洛谷P3327 [SDOI2015]约数个数和(莫比乌斯反演)
公式太长了……我就直接抄一下这位大佬好了……实在懒得打了
首先据说$d(ij)$有个性质$$d(ij)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]$$
我们所求的答案为$$ans=\sum_{i=1}^{n}\sum_{j=1}^{m}d(ij)$$
$$ans=\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]$$
考虑一下$gcd(x,y)=1$,我们可以考虑莫比乌斯函数的性质,那么即$\sum_{d\mid n}\mu(d)$与$[n=1]$的结果相同
则有$$ans=\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{x|i}\sum_{y|j}\sum_{d|gcd(x,y)}\mu(d)$$
然后我们由枚举$gcd(x,y)$的约数改为直接枚举$d$
$$ans=\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{x|i}\sum_{y|j}\sum_{d=1}^{min(n,m)}\mu(d)*[d|gcd(x,y)]$$
然后把$\mu(d)$提取出来
$$ans=\sum_{d=1}^{min(n,m)}\mu(d)\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{x|i}\sum_{y|j}[d|gcd(x,y)]$$
然后,我们把枚举$i,j$和约数改为直接枚举约数,然后每个约数都会对他所有的倍数产生贡献
$$ans=\sum_{d=1}^{min(n,m)}\mu(d)\sum_{x=1}^{n}\sum_{y=1}^{m}[d|gcd(x,y)]\lfloor\frac{n}{x}\rfloor\lfloor\frac{m}{y}\rfloor$$
然后我们把枚举$x,y$改为枚举$dx,dy$,那么就可以把$[d|gcd(x,y)]$这个条件给消掉
$$ans=\sum_{d=1}^{min(n,m)}\mu(d)\sum_{x=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{y=1}^{{\lfloor\frac{m}{d}\rfloor}}\lfloor\frac{n}{dx}\rfloor\lfloor\frac{m}{dy}\rfloor$$
$$ans=\sum_{d=1}^{min(n,m)}\mu(d)(\sum_{x=1}^{\lfloor\frac{n}{d}\rfloor}\lfloor\frac{n}{dx}\rfloor)(\sum_{y=1}^{{\lfloor\frac{m}{d}\rfloor}}\lfloor\frac{m}{dy}\rfloor)$$
然后$\sum_{x=1}^{\lfloor\frac{n}{d}\rfloor}\lfloor\frac{n}{dx}\rfloor$和$\sum_{y=1}^{{\lfloor\frac{m}{d}\rfloor}}\lfloor\frac{m}{dy}\rfloor$的前缀和都可以预处理,直接上整除分块就可以了
//minamoto
#include<iostream>
#include<cstdio>
#define ll long long
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=;
int vis[N],p[N],mu[N],sum[N],m;
ll g[N],ans;
void init(int n){
mu[]=;
for(int i=;i<=n;++i){
if(!vis[i]) p[++m]=i,mu[i]=-;
for(int j=;j<=m&&p[j]*i<=n;++j){
vis[i*p[j]]=;
if(i%p[j]==) break;
mu[i*p[j]]=-mu[i];
}
}
for(int i=;i<=n;++i) sum[i]=sum[i-]+mu[i];
for(int i=;i<=n;++i){
ans=;
for(int l=,r;l<=i;l=r+){
r=(i/(i/l));
ans+=1ll*(r-l+)*(i/l);
}
g[i]=ans;
}
}
int main(){
// freopen("testdata.in","r",stdin);
init();
int n,m,T,lim;scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
lim=min(n,m),ans=;
for(int l=,r;l<=lim;l=r+){
r=min(n/(n/l),m/(m/l));
ans+=(sum[r]-sum[l-])*g[n/l]*g[m/l];
}
printf("%lld\n",ans);
}
return ;
}
洛谷P3327 [SDOI2015]约数个数和(莫比乌斯反演)的更多相关文章
- 洛谷P3327 [SDOI2015]约数个数和(莫比乌斯反演)
题目描述 设d(x)为x的约数个数,给定N.M,求 \sum^N_{i=1}\sum^M_{j=1}d(ij)∑i=1N∑j=1Md(ij) 输入输出格式 输入格式: 输入文件包含多组测试数据.第 ...
- P3327 [SDOI2015]约数个数和 莫比乌斯反演
P3327 [SDOI2015]约数个数和 莫比乌斯反演 链接 luogu 思路 第一个式子我也不会,luogu有个证明,自己感悟吧. \[d(ij)=\sum\limits_{x|i}\sum\li ...
- 洛谷P3327 - [SDOI2015]约数个数和
Portal Description 共\(T(T\leq5\times10^4)\)组数据.给出\(n,m(n,m\leq5\times10^4)\),求\[\sum_{i=1}^n\sum_{j= ...
- 洛谷P3327 [SDOI2015]约数个数和 【莫比乌斯反演】
题目 设d(x)为x的约数个数,给定N.M,求\(\sum_{i = 1}^{N} \sum_{j = 1}^{M} d(ij)\) 输入格式 输入文件包含多组测试数据.第一行,一个整数T,表示测试数 ...
- 洛谷 P3327 [SDOI2015]约数个数和 || Number Challenge Codeforces - 235E
https://www.luogu.org/problemnew/show/P3327 不会做. 去搜题解...为什么题解都用了一个奇怪的公式?太奇怪了啊... 公式是这样的: $d(xy)=\sum ...
- luogu P3327 [SDOI2015]约数个数和 莫比乌斯反演
题面 我的做法基于以下两个公式: \[[n=1]=\sum_{d|n}\mu(d)\] \[\sigma_0(i*j)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]\] 其中\(\ ...
- 【BZOJ3994】[SDOI2015]约数个数和 莫比乌斯反演
[BZOJ3994][SDOI2015]约数个数和 Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组 ...
- [BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)
[BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问 ...
- LOJ #2185 / 洛谷 P3329 - [SDOI2015]约数个数和(莫比乌斯函数)
LOJ 题面传送门 / 洛谷题面传送门 题意: 求 \(\sum\limits_{i=1}^n\sum\limits_{j=1}^md(ij)\),\(d(x)\) 为 \(x\) 的约数个数. \( ...
随机推荐
- Extjs — Grid数据导出成Excel
最近因为项目问题,需要解决Extjs导出成Excel的问题. 下面简单描述这个问题解决的步骤如下: 1.先在js文件里写了一个button的handler事件,通过点击按钮,来实现调用ExportEx ...
- 使用阿里云maven镜像加速jar包下载
编辑 MAVEN_HOME/conf 文件夹下的 settings.xml,找到 <mirrors> 节点,把下面内容添加在其子节点内: <mirror> <id> ...
- HDU4511 小明系列故事——女友的考验 —— AC自动机 + DP
题目链接:https://vjudge.net/problem/HDU-4511 小明系列故事——女友的考验 Time Limit: 500/200 MS (Java/Others) Memor ...
- Linux bash shell环境变量以及语法规范
摘自: http://blog.csdn.net/abc_ii/article/details/8762739
- zabbix 上 mysql 优化
摘自: https://segmentfault.com/a/1190000001638101
- javascript类的简单定义
在面向对象编程中,类(class)是对象(object)的模板,定义了同一组对象(又称"实例")共有的属性和方法. Javascript语言不支持"类",但是可 ...
- Matlab之rand(), randn(), randi()函数的使用方法
1. rand()函数用于生成取值在(0~1)之间均匀分布的伪随机数.rand(n):生成n*n的0~1之间的满足均匀分布的伪随机矩阵:rand(m,n):生成m*n的伪随机数:rand(m,n,' ...
- sqlite:多线程操作数据库“database is locked”解决方法
1. 使sqlite支持多线程(不确定是否非加不可,暂且加上,以备后患) 可以在编译时/启动时/运行时选择线程模式,参考:http://www.cnblogs.com/liaj/p/4015219.h ...
- 动态创建TeeChart的简便方法
最近在项目中使用Teechart ocx版本替换了labview的老版本控件,显示效果和效率均有提高,但是却遇到多线程下报access violation的问题. 翻遍大小论坛,最后在官网论坛找到相同 ...
- maven学习九 关于maven一些參數
一 maven profile: 不同的运行环境,比如开发环境.测试环境.生产环境,而我们的软件在不同的环境中,有的配置可能会不一样,比如数据源配置.日志文件配置.以及一些软件运行过程中的基 ...