Ref:

https://onlinecourses.science.psu.edu/stat464/print/book/export/html/5


Two sample test

  • 直接使用R的t-test

t.test(n, t, alternative="two.sided", var.equal=T)

  • permutation test

当我们判断两个样本的均值或者中值是否相等时,如果样本数量足够大,可以使用t-test。

但是,当两个样本的数量都很小时,它们的分布可能是有偏的,所以考虑permutation test。

原理:假设样本X1有m个数据,均值为mean(X1);X2有n个数据,均值为mean(X2)。定义:Dobs=mean(X1)-mean(X2)

那么我们可以把m+n个数据放在一起,从中挑m个放到X1里,剩下的放到X2中。这样挑的方法共有k种:

计算Di=mean(X1)-mean(X2) for i = 1...k

这样再与α比较,就可以判断要不要拒绝原假设。

当然,不止可以比较均值和中值,还可以比较trimmed mean.这三种方法的选择标准是:

数据接近正态分布,使用均值的差;

数据分布对称,但有离群值,使用trimmed mean(去掉极端值)的差;

数据分布不对称,使用中值的差。

那么,当m+n比较大时,遍历所有的Di(i=1...k)就变成一件很耗时的事情。因此,我们希望可以估计这个p值,而不是计数然后计算。

同时,当k很大时,如果我们指定一个遍历次数,如999,那么这样计算出的p值和真实的p值之间的误差是很小的,因此,我们通过

指定k值,来减少耗时。其他步骤与前面一直,只是循环的次数是指定的而已。

  • Wilcoxon Rank Sum Test

两样本非参数检验。我们首先将两个样本的数据合在一起,进行排序。然后计算样本1的rank的和,使用上面的方法,做permutation

当然,也可以使用样本2的rank sum。

另外,如果m和n小的话,可以使用表格。对于相等的数,排序时,我们使用均值。

此处参考University of Auckland的讲义:

  • 相比t-test,Wilcoxon test对离群值更不敏感;
  • Wilcoxon test更适合于检查两个样本分布的位置(图上可以用均值,中值描述),而非形状等其他方面的区别;
  • Mann-Whitney test与Wilcoxon是等价的,虽然test statistic不一样。

不管原理的话,直接用R就好了啊~

wilcox.test(m, w, alternative="greater", exact=T)

Applied Nonparametric Statistics-lec4的更多相关文章

  1. Applied Nonparametric Statistics-lec10

    Ref:https://onlinecourses.science.psu.edu/stat464/print/book/export/html/14 估计CDF The Empirical CDF ...

  2. Applied Nonparametric Statistics-lec9

    Ref:https://onlinecourses.science.psu.edu/stat464/print/book/export/html/12 前面我们考虑的情况是:response是连续的, ...

  3. Applied Nonparametric Statistics-lec8

    Ref:https://onlinecourses.science.psu.edu/stat464/print/book/export/html/11 additive model value = t ...

  4. Applied Nonparametric Statistics-lec7

    Ref: https://onlinecourses.science.psu.edu/stat464/print/book/export/html/9 经过前面的步骤,我们已经可以判断几个样本之间是否 ...

  5. Applied Nonparametric Statistics-lec6

    Ref: https://onlinecourses.science.psu.edu/stat464/print/book/export/html/8 前面都是对一两个样本的检查,现在考虑k个样本的情 ...

  6. Applied Nonparametric Statistics-lec5

    今天继续two-sample test Ref: https://onlinecourses.science.psu.edu/stat464/print/book/export/html/6 Mann ...

  7. Applied Nonparametric Statistics-lec3

    Ref: https://onlinecourses.science.psu.edu/stat464/print/book/export/html/4 使用非参数方法的优势: 1. 对总体分布做的假设 ...

  8. Applied Nonparametric Statistics-lec2

    Ref: https://onlinecourses.science.psu.edu/stat464/print/book/export/html/3 The Binomial Distributio ...

  9. Applied Nonparametric Statistics-lec1

    参考网址: https://onlinecourses.science.psu.edu/stat464/node/2 Binomial Distribution Normal Distribution ...

随机推荐

  1. 微软官方NET Core 2.0

    NET Core 2.0 微软官方发布的.NET Core 2.0相关的博客: Announcing .NET Standard 2.0 Announcing .NET Core 2.0 F# and ...

  2. Codeforces Round #375 (Div. 2) D. Lakes in Berland 并查集

    http://codeforces.com/contest/723/problem/D 这题是只能把小河填了,题目那里有写,其实如果读懂题这题是挺简单的,预处理出每一块的大小,排好序,从小到大填就行了 ...

  3. Spring Security在标准登录表单中添加一个额外的字段

    概述 在本文中,我们将通过向标准登录表单添加额外字段来实现Spring Security的自定义身份验证方案. 我们将重点关注两种不同的方法,以展示框架的多功能性以及我们可以使用它的灵活方式. 我们的 ...

  4. 获取spring里的bean

    ClassPathXmlApplicationContext applicationContext = new ClassPathXmlApplicationContext("spring. ...

  5. 【虚拟机-网络IP】使用 Powershell 设置 VNET 中的静态 IP

    本文包含以下内容 对已有虚机设置静态 Internal IP 取消对对已有虚机设置的静态 Internal IP 创建静态 Internal IP的虚机 使用中的注意点 请注意:以下操作需要下载最新版 ...

  6. CentOS7.2上安装Python3.6

    CentOS 7下安装Python3.6 1)安装python3.6可能使用的依赖yum -y install openssl-devel bzip2-devel expat-devel gdbm-d ...

  7. 运行JavaWeb项目报错Access denied for user 'root'@'localhost' (using password: YES)

    问题重现:(以下讨论范围仅限Windows环境): C:\AppServ\MySQL> mysql -u root -p Enter password: ERROR 1045 (28000):  ...

  8. 洛谷 P2002 消息扩散

    题目背景 本场比赛第一题,给个简单的吧,这 100 分先拿着. 题目描述 有n个城市,中间有单向道路连接,消息会沿着道路扩散,现在给出n个城市及其之间的道路,问至少需要在几个城市发布消息才能让这所有n ...

  9. 11g 新特性 Member Kill Escalation 简介

    首先我们介绍一下历史.在oracle 9i/10g 中,如果一个数据库实例需要驱逐(evict, alert 文件中会出现ora-29740错误)另一个实例时,需要通过LMON进程在控制文件(以下简称 ...

  10. UVA 1153 Keep the Customer Satisfied 顾客是上帝(贪心)

    因为每增加一个订单,时间是会增加的,所以先按截止时间d排序, 这样的话无论是删除一个订单,或者增加订单,都不会影响已经选好的订单. 然后维护一个已经选好的订单的大根堆(优先队列),如果当前无法选择的话 ...