题意:

给出一棵树,每条边有一个容量。

有若干次询问:\(S \, T \, K \, A \, B\),求路径\(S \to T\)的最大流量。

有两种方法可以增大流量:

  • 花费\(A\)可以新修一条管道,管道可以连接任意两个点,两个点之间可以有任意条管道连接,新修的管道容量为\(1\)
  • 花费\(B\)可以使某条管道(包括新修的管道)的容量增加\(1\)

求在不超过预算\(K\)的情况下的最大流量。

分析:

注意到流量最大只有\(10^4\),所以我们可以直接在值域上建一棵主席树。

主席树区间维护的是管道的个数以及它们的容量之和,这样方便后面的计算。

首先我们可以求一下路径上的第\(1\)小的容量,这是初始容量。

按照\(A, B\)的大小关系,有两种情况:

  • \(A \leq B\),把所有的经费都用来修建新管道上。因为扩容一次不一定能使流量增加,但是新修管道一定可以增加流量,而且还便宜。
  • \(A > B\),这样就不能随便新建管道了,所以有两种可能:
    • 只新建一条管道,然后再这条新管道上扩容
    • 只在原来的管道上扩容

在求能扩容得到的最大容量可以用二分的思想,往主席树的左右子树走下去。

另:根据题面的数据范围,最终答案可能会爆int的,但是事实证明测试数据中没有这样的数据。。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int maxn = 100000 + 10;
const int M = 20;
int n, m; struct Edge
{
int v, w, nxt;
Edge() {}
Edge(int v, int w, int nxt): v(v), w(w), nxt(nxt) {}
}; int ecnt, head[maxn];
Edge edges[maxn * 2]; void AddEdge(int u, int v, int w) {
edges[ecnt] = Edge(v, w, head[u]);
head[u] = ecnt++;
} struct Node
{
int lch, rch, cnt, sum;
}T[maxn << 5];
int sz, root[maxn]; int update(int pre, int L, int R, int pos) {
int rt = ++sz;
T[rt] = T[pre];
T[rt].cnt++;
T[rt].sum += pos;
if(L < R) {
int M = (L + R) / 2;
if(pos <= M) T[rt].lch = update(T[pre].lch, L, M, pos);
else T[rt].rch = update(T[pre].rch, M+1, R, pos);
}
return rt;
} int query(int u, int v, int l, int L, int R, int k) {
if(L == R) return L;
int M = (L + R) / 2;
int sum = T[T[u].lch].cnt + T[T[v].lch].cnt - T[T[l].lch].cnt * 2;
if(sum >= k) return query(T[u].lch, T[v].lch, T[l].lch, L, M, k);
else return query(T[u].rch, T[v].rch, T[l].rch, M+1, R, k - sum);
} int fa[maxn], dep[maxn]; void dfs(int u) {
for(int i = head[u]; ~i; i = edges[i].nxt) {
int v = edges[i].v;
if(v == fa[u]) continue;
fa[v] = u;
dep[v] = dep[u] + 1;
root[v] = update(root[u], 0, M, edges[i].w);
dfs(v);
}
} int anc[maxn][20]; void preprocess() {
memset(anc, 0, sizeof(anc));
for(int i = 1; i <= n; i++) anc[i][0] = fa[i];
for(int j = 1; (1 << j) < n; j++)
for(int i = 1; i <= n; i++) if(anc[i][j-1])
anc[i][j] = anc[anc[i][j-1]][j-1];
} int LCA(int u, int v) {
if(dep[u] < dep[v]) swap(u, v);
int log;
for(log = 0; (1 << log) < dep[u]; log++);
for(int i = log; i >= 0; i--)
if(dep[u] - (1<<i) >= dep[v]) u = anc[u][i];
if(u == v) return u;
for(int i = log; i >= 0; i--)
if(anc[u][i] && anc[u][i] != anc[v][i])
u = anc[u][i], v = anc[v][i];
return fa[u];
} int bsearch(int u, int v, int l, int x) {
int L = 0, R = M, cnt = 0, sum = 0;
while(L < R) {
int mid = (L + R) / 2;
int tcnt = T[T[u].lch].cnt + T[T[v].lch].cnt - T[T[l].lch].cnt * 2;
int tsum = T[T[u].lch].sum + T[T[v].lch].sum - T[T[l].lch].sum * 2;
if((cnt + tcnt) * mid - tsum - sum > x) {
u = T[u].lch, v = T[v].lch, l = T[l].lch;
R = mid;
} else {
cnt += tcnt; sum += tsum;
u = T[u].rch, v = T[v].rch, l = T[l].rch;
L = mid + 1;
}
}
return L - 1;
} int main()
{
int _; scanf("%d", &_);
for(int kase = 1; kase <= _; kase++) {
printf("Case #%d:\n", kase); scanf("%d%d", &n, &m); sz = 0;
ecnt = 0;
memset(head, -1, sizeof(head));
for(int i = 1; i < n; i++) {
int u, v, w; scanf("%d%d%d", &u, &v, &w);
AddEdge(u, v, w); AddEdge(v, u, w);
} dfs(1); preprocess();
while(m--) {
int u, v, k, a, b;
scanf("%d%d%d%d%d", &u, &v, &k, &a, &b);
int lca = LCA(u, v);
int base = query(root[u], root[v], root[lca], 0, M, 1);
if(a <= b) printf("%d\n", base + k / a);
else {
int ans = base;
if(k >= a) ans += (k - a) / b + 1;
int x = k / b;
ans = max(ans, bsearch(root[u], root[v], root[lca], x));
printf("%d\n", ans);
}
}
} return 0;
}

HDU 4729 An Easy Problem for Elfness 主席树的更多相关文章

  1. HDU 4729 An Easy Problem for Elfness(树链剖分边权+二分)

    题意 链接:https://cn.vjudge.net/problem/HDU-4729 给你n个点,然你求两个点s和t之间的最大流.而且你有一定的钱k,可以进行两种操作 1.在任意连个点之间建立一个 ...

  2. 数据结构(主席树):HDU 4729 An Easy Problem for Elfness

    An Easy Problem for Elfness Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 65535/65535 K (J ...

  3. HDU 4729 An Easy Problem for Elfness (主席树,树上第K大)

    转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove 题意:给出一个带边权的图.对于每一个询问(S , ...

  4. HDU 4729 An Easy Problem for Elfness(主席树)(2013 ACM/ICPC Asia Regional Chengdu Online)

    Problem Description Pfctgeorge is totally a tall rich and handsome guy. He plans to build a huge wat ...

  5. 【HDOJ】4729 An Easy Problem for Elfness

    其实是求树上的路径间的数据第K大的题目.果断主席树 + LCA.初始流量是这条路径上的最小值.若a<=b,显然直接为s->t建立pipe可以使流量最优:否则,对[0, 10**4]二分得到 ...

  6. hdu 5475 An easy problem(暴力 || 线段树区间单点更新)

    http://acm.hdu.edu.cn/showproblem.php?pid=5475 An easy problem Time Limit: 8000/5000 MS (Java/Others ...

  7. [HDU4729]An Easy Problem for Elfness

    [HDU4729]An Easy Problem for Elfness 题目大意: 给你一棵\(n(n\le10^5)\)个点的树,树上每条边都有容量. \(m(m\le10^5)\)次询问,每次询 ...

  8. HDU 5475 An easy problem 线段树

    An easy problem Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pi ...

  9. HDU 2132 An easy problem

    http://acm.hdu.edu.cn/showproblem.php?pid=2132 Problem Description We once did a lot of recursional ...

随机推荐

  1. When you want to give up, remember why you started.

    When you want to give up, remember why you started.当你想要放弃的时候,请记住当初你为何而开始.

  2. There is much opportunity for anyone willing to dedicate himself to his labors.

    There is much opportunity for anyone willing to dedicate himself to his labors.付出努力的人才有机会出人头地.

  3. leetcdoe Valid Anagram

    题目连接 https://leetcode.com/problems/valid-anagram/ Valid Anagram Description Given two strings s and ...

  4. 升级CentOS内核 - 2.6升级到3.10/最新内核

    ##记得切换到root用户执行升级操作. [root@localhost ~]# uname -a ##旧版 Linux localhost.localdomain 2.6.32-279.el6.i6 ...

  5. SQL SEVER数据库重建索引的方法

    一.查询思路 1.想要判断数据库查询缓慢的问题,可以使用如下语句,可以列出查询语句的平均时间,总时间,所用的CPU时间等信息 ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...

  6. Python + selenium之unitest(1)

    单元测试负责对最小的软件设计单元(模块)进行验证,它使用软件设计文档中对模块的描述作为指南,对重要的程序进行测试以发现模块中的错误. 下面演示不用测试框架的单元测试: # 计算器类 class Cou ...

  7. python 之网页解析器

    一.什么是网页解析器 1.网页解析器名词解释 首先让我们来了解下,什么是网页解析器,简单的说就是用来解析html网页的工具,准确的说:它是一个HTML网页信息提取工具,就是从html网页中解析提取出“ ...

  8. BZOJ 3712: [PA2014]Fiolki 倍增+想法

    3712: [PA2014]Fiolki Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 437  Solved: 115[Submit][Status ...

  9. 使用nginx搭建一个简单的负载均衡

    在windows系统上使用IIS模拟出两个不同服务器的站点: 然后再NGINX使用轮询机制配置两个服务器以及虚拟服务器的端口: 需要注意的是,配置虚拟代理域名的话需要找到windowsC盘下的host ...

  10. CF Gym 100187B A Lot of Joy (古典概型)

    题意:给两个一样的只含有26个小写字母的字符串,然后两个分别做一下排列,问如果对应位置的字母相等那么就愉悦值就加一,问愉悦值的期望是多少? 题解:只考虑两个序列相对的位置,那么就相当于固定一个位置,另 ...