bzoj 4753 [Jsoi2016]最佳团体——0/1分数规划
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4753
0/1分数规划裸题。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define db double
using namespace std;
const int N=;
const db eps=1e-,INF=1e8;
int n,k,s[N],p[N],hd[N],xnt,to[N],nxt[N],siz[N];
db ans,l,r,mid,a[N],dp[N][N];
int rdn()
{
int ret=;bool fx=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')fx=;ch=getchar();}
while(ch>=''&&ch<='') ret=(ret<<)+(ret<<)+ch-'',ch=getchar();
return fx?ret:-ret;
}
void add(int x,int y)
{
to[++xnt]=y;nxt[xnt]=hd[x];hd[x]=xnt;
}
void dfs(int cr)
{
dp[cr][]=a[cr]; siz[cr]=;
for(int j=;j<=k;j++) dp[cr][j]=-INF;
for(int i=hd[cr],v;i;i=nxt[i])
{
dfs(v=to[i]);
for(int j=min(k,siz[cr]+siz[v]);j>=;j--)
for(int l=max(,j-siz[cr]);l<=siz[v]&&l<j;l++)
dp[cr][j]=max(dp[cr][j],dp[v][l]+dp[cr][j-l]);
siz[cr]+=siz[v];
}
}
bool check()
{
for(int i=;i<=n;i++)
a[i]=p[i]-s[i]*mid;
dfs();
return dp[][k]>=;
}
int main()
{
k=rdn()+; n=rdn();
for(int i=,d;i<=n;i++)
{
s[i]=rdn(); p[i]=rdn();
d=rdn(); add(d,i); r+=p[i];
} for(int i=;i<=n;i++) dp[i][]=-INF;
while(r-l>eps)
{
mid=(l+r)/;
if(check()) ans=mid,l=mid+eps;
else r=mid-eps;
}
printf("%.3lf\n",ans);
return ;
}
bzoj 4753 [Jsoi2016]最佳团体——0/1分数规划的更多相关文章
- BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划
BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划 又是一道卡精度卡得我头皮发麻的题-- 题面(--蜜汁改编版) YL大哥是24OI的大哥,有一天,他想要从\(N\)个候选人中选 ...
- bzoj 4753: [Jsoi2016]最佳团体【01分数规划+二分+树上背包】
01分数规划,二分答案然后把判别式变成Σp[i]-Σs[i]*mid>=0,然后树上背包判断,设f[i][j]为在i点子树里选j个的最大收益,随便背包一下就好 最丧病的是神卡常--转移的时候要另 ...
- LUOGU P4322 [JSOI2016]最佳团体(0/1分数规划+树形背包)
传送门 解题思路 一道0/1分数规划+树上背包,两个应该都挺裸的,话说我常数为何如此之大..不吸氧洛谷过不了啊. 代码 #include<iostream> #include<cst ...
- BZOJ.4753.[JSOI2016]最佳团体(01分数规划 树形背包DP)
题目链接 \(Description\) 每个点有费用si与价值pi,要求选一些带根的连通块,总大小为k,使得 \(\frac{∑pi}{∑si}\) 最大 \(Solution\) 01分数规划,然 ...
- BZOJ 4753 [Jsoi2016]最佳团体 ——01分数规划 树形DP
要求比值最大,当然用分数规划. 二分答案,转化为选取一个最大的联通块使得它们的和大于0 然后我们直接DP. 复杂度$O(n^2\log {n})$ #include <map> #incl ...
- [Jsoi2016]最佳团体 BZOJ4753 01分数规划+树形背包/dfs序
分析: 化简一下我们可以发现,suma*ans=sumb,那么我们考虑二分ans,之后做树形背包上做剪枝. 时间复杂度证明,By GXZlegend O(nklogans) 附上代码: #includ ...
- bzoj 3232 圈地游戏——0/1分数规划(或网络流)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3232 当然是0/1分数规划.但加的东西和减的东西不在一起,怎么办? 考虑把它们合在一起.因为 ...
- 【BZOJ】4753: [Jsoi2016]最佳团体 01分数规划+树上背包
[题意]n个人,每个人有价值ai和代价bi和一个依赖对象ri<i,选择 i 时 ri 也必须选择(ri=0时不依赖),求选择k个人使得Σai/Σbi最大.n<=2500,ai,bi< ...
- Bzoj1486/洛谷P3199 最小圈(0/1分数规划+spfa)/(动态规划+结论)
题面 Bzoj 洛谷 题解(0/1分数规划+spfa) 考虑\(0/1\)分数规划,设当前枚举到的答案为\(ans\) 则我们要使(其中\(\forall b_i=1\)) \[ \frac{\sum ...
随机推荐
- Fakeapp2.2安装,使用简记--------------转载自iJessie
原文:https://www.cnblogs.com/iJessie/p/8568377.html 1,硬件和操作系统,支持cuda的Nvidia显卡,8G及以上的内存,Windows10 x64(推 ...
- Delphi下如何使程序在Win7/Vista上用管理员权限运行(转)
Delphi程序必须在资源里面嵌入MANIFEST信息 一 首先编辑一个文件,内容如下: <?xml version="1.0" encoding="UTF-8&q ...
- 在一个JS文件中引用另一个JS文件
方法一,在调用文件的顶部加入下例代码: document.write(”<script language=javascript src=’/js/import.js’></scrip ...
- ios -- 极光推送《1》
昨天公司项目要加入远程推送功能,自己做显然会很麻烦,所以用了极光的远程推送,下面我会讲如何制作推送证书并使用极光推送进行远程推送. 先讲讲怎么下载推送证书吧(前面的很简单要是知道的可以直接往下滑,简书 ...
- EasyPlayer windows RTSP播放器OCX插件使用说明
鉴于大家对于EasyPlayer插件的使用还不太熟悉,特此写一篇插件的使用文档,供大家参考:EasyPlayer插件有两种,一种是基于IE的ActiveX控件,一种是基于FireFox(也支持多浏览器 ...
- python书写日志的重要性?
转自:https://blog.csdn.net/weixin_43063753/article/details/82899395 程序为什么要写日志?#为了能够在程序在运行过程中记录错误,方便维护, ...
- 如何使用doctrine:migrations:migrate
doctrine:migrations:migrate: 可以生成数据库表 当新建完实体之后需要执行 doctrine:migrations:diff 更新差异到db 然后就ok了,这时候你的app/ ...
- 微信小程序开发:学习笔记[5]——JavaScript脚本
微信小程序开发:学习笔记[5]——JavaScript脚本 快速开始 介绍 小程序的主要开发语言是 JavaScript ,开发者使用 JavaScript 来开发业务逻辑以及调用小程序的 API 来 ...
- appium-andriod自动化实现注意项
注意项: 1.appium需要全局安装,否则run test case 报错“appium not installed” 2.启动appium命令 node /Applications/Appium. ...
- 《程序员代码面试指南》第八章 数组和矩阵问题 找到无序数组中最小的k 个数
题目 找到无序数组中最小的k 个数 java代码 package com.lizhouwei.chapter8; /** * @Description: 找到无序数组中最小的k 个数 * @Autho ...