题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4753

0/1分数规划裸题。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define db double
using namespace std;
const int N=;
const db eps=1e-,INF=1e8;
int n,k,s[N],p[N],hd[N],xnt,to[N],nxt[N],siz[N];
db ans,l,r,mid,a[N],dp[N][N];
int rdn()
{
int ret=;bool fx=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')fx=;ch=getchar();}
while(ch>=''&&ch<='') ret=(ret<<)+(ret<<)+ch-'',ch=getchar();
return fx?ret:-ret;
}
void add(int x,int y)
{
to[++xnt]=y;nxt[xnt]=hd[x];hd[x]=xnt;
}
void dfs(int cr)
{
dp[cr][]=a[cr]; siz[cr]=;
for(int j=;j<=k;j++) dp[cr][j]=-INF;
for(int i=hd[cr],v;i;i=nxt[i])
{
dfs(v=to[i]);
for(int j=min(k,siz[cr]+siz[v]);j>=;j--)
for(int l=max(,j-siz[cr]);l<=siz[v]&&l<j;l++)
dp[cr][j]=max(dp[cr][j],dp[v][l]+dp[cr][j-l]);
siz[cr]+=siz[v];
}
}
bool check()
{
for(int i=;i<=n;i++)
a[i]=p[i]-s[i]*mid;
dfs();
return dp[][k]>=;
}
int main()
{
k=rdn()+; n=rdn();
for(int i=,d;i<=n;i++)
{
s[i]=rdn(); p[i]=rdn();
d=rdn(); add(d,i); r+=p[i];
} for(int i=;i<=n;i++) dp[i][]=-INF;
while(r-l>eps)
{
mid=(l+r)/;
if(check()) ans=mid,l=mid+eps;
else r=mid-eps;
}
printf("%.3lf\n",ans);
return ;
}

bzoj 4753 [Jsoi2016]最佳团体——0/1分数规划的更多相关文章

  1. BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划

    BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划 又是一道卡精度卡得我头皮发麻的题-- 题面(--蜜汁改编版) YL大哥是24OI的大哥,有一天,他想要从\(N\)个候选人中选 ...

  2. bzoj 4753: [Jsoi2016]最佳团体【01分数规划+二分+树上背包】

    01分数规划,二分答案然后把判别式变成Σp[i]-Σs[i]*mid>=0,然后树上背包判断,设f[i][j]为在i点子树里选j个的最大收益,随便背包一下就好 最丧病的是神卡常--转移的时候要另 ...

  3. LUOGU P4322 [JSOI2016]最佳团体(0/1分数规划+树形背包)

    传送门 解题思路 一道0/1分数规划+树上背包,两个应该都挺裸的,话说我常数为何如此之大..不吸氧洛谷过不了啊. 代码 #include<iostream> #include<cst ...

  4. BZOJ.4753.[JSOI2016]最佳团体(01分数规划 树形背包DP)

    题目链接 \(Description\) 每个点有费用si与价值pi,要求选一些带根的连通块,总大小为k,使得 \(\frac{∑pi}{∑si}\) 最大 \(Solution\) 01分数规划,然 ...

  5. BZOJ 4753 [Jsoi2016]最佳团体 ——01分数规划 树形DP

    要求比值最大,当然用分数规划. 二分答案,转化为选取一个最大的联通块使得它们的和大于0 然后我们直接DP. 复杂度$O(n^2\log {n})$ #include <map> #incl ...

  6. [Jsoi2016]最佳团体 BZOJ4753 01分数规划+树形背包/dfs序

    分析: 化简一下我们可以发现,suma*ans=sumb,那么我们考虑二分ans,之后做树形背包上做剪枝. 时间复杂度证明,By GXZlegend O(nklogans) 附上代码: #includ ...

  7. bzoj 3232 圈地游戏——0/1分数规划(或网络流)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3232 当然是0/1分数规划.但加的东西和减的东西不在一起,怎么办? 考虑把它们合在一起.因为 ...

  8. 【BZOJ】4753: [Jsoi2016]最佳团体 01分数规划+树上背包

    [题意]n个人,每个人有价值ai和代价bi和一个依赖对象ri<i,选择 i 时 ri 也必须选择(ri=0时不依赖),求选择k个人使得Σai/Σbi最大.n<=2500,ai,bi< ...

  9. Bzoj1486/洛谷P3199 最小圈(0/1分数规划+spfa)/(动态规划+结论)

    题面 Bzoj 洛谷 题解(0/1分数规划+spfa) 考虑\(0/1\)分数规划,设当前枚举到的答案为\(ans\) 则我们要使(其中\(\forall b_i=1\)) \[ \frac{\sum ...

随机推荐

  1. 吐血整理:PyTorch项目代码与资源列表 | 资源下载

    http://www.sohu.com/a/164171974_741733   本文收集了大量基于 PyTorch 实现的代码链接,其中有适用于深度学习新手的“入门指导系列”,也有适用于老司机的论文 ...

  2. Go语言入门系列1:安装,How to Write Go Code

    https://golang.org/doc/code.html src contains Go source files, pkg contains package objects, and bin ...

  3. 最简单的PHP开发环境搭建

    近期发现一个非常easy的,适合刚開始学习的人的PHP开发环境,整个环境仅仅有三样东东,PHP ,APACHE , MYSQL可是对于初学PHP的人来说,己经足够了. 假设有兴趣的话能够直接去百度PN ...

  4. Android 异常解决方法【汇总】

    (1)异常:Android中引入第三方Jar包的方法(Java.lang.NoClassDefFoundError解决办法) 1.在工程下新建lib文件夹,将需要的第三方包拷贝进来.2.将引用的第三方 ...

  5. Java线程池的配置

    1.ThreadPoolExecutor的重要参数 1.corePoolSize:核心线程数 * 核心线程会一直存活,及时没有任务需要执行 * 当线程数小于核心线程数时,即使有线程空闲,线程池也会优先 ...

  6. spring-boot5

    Spring Boot集成MyBatis: (1)新建maven project;取名为:spring-boot-mybatis (2)在pom.xml文件中引入相关依赖: (3)创建启动类App.j ...

  7. ajax 异步 跨域上传图片

    客户端 <label for="text">名称</label> <input type="text" id="text ...

  8. 在ubuntu怎样修改默认的编码格式

    ubuntu修改系统默认编码的方法是: 1. 参考 /usr/share/i18n/SUPPORTED 编辑/var/lib/locales/supported.d/* gedit /var/lib/ ...

  9. adaptiveThreshold自适应二值化源码分析

    自适应二值化介绍: 二值化算法是用输入像素的值I与一个值C来比较,根据比较结果确定输出值. 自适应二值化的每一个像素的比较值C都不同,比较值C由这个像素为中心的一个块范围计算在减去差值delta得到. ...

  10. zabbix性能优化等

    摘自: http://blog.sina.com.cn/s/blog_4cbf97060101fcfw.html 非常好的一篇,值得有用