Python使用三种方法实现PCA算法[转]
主成分分析(PCA) vs 多元判别式分析(MDA)
PCA和MDA都是线性变换的方法,二者关系密切。在PCA中,我们寻找数据集中最大化方差的成分,在MDA中,我们对类间最大散布的方向更感兴趣。
一句话,通过PCA,我们将整个数据集(不带类别标签)映射到一个子空间中,在MDA中,我们致力于找到一个能够最好区分各类的最佳子集。粗略来讲,PCA是通过寻找方差最大的轴(在一类中,因为PCA把整个数据集当做一类),在MDA中,我们还需要最大化类间散布。
在通常的模式识别问题中,MDA往往在PCA后面。
PCA的主要算法如下:
- 组织数据形式,以便于模型使用;
- 计算样本每个特征的平均值;
- 每个样本数据减去该特征的平均值(归一化处理);
- 求协方差矩阵;
- 找到协方差矩阵的特征值和特征向量;
- 对特征值和特征向量重新排列(特征值从大到小排列);
- 对特征值求取累计贡献率;
- 对累计贡献率按照某个特定比例,选取特征向量集的字迹合;
- 对原始数据(第三步后)。
其中协方差矩阵的分解可以通过按对称矩阵的特征向量来,也可以通过分解矩阵的SVD来实现,而在Scikit-learn中,也是采用SVD来实现PCA算法的。
本文将用三种方法来实现PCA算法,一种是原始算法,即上面所描述的算法过程,具体的计算方法和过程,可以参考:A tutorial on Principal Components Analysis, Lindsay I Smith. 一种是带SVD的原始算法,在Python的Numpy模块中已经实现了SVD算法,并且将特征值从大从小排列,省去了对特征值和特征向量重新排列这一步。最后一种方法是用Python的Scikit-learn模块实现的PCA类直接进行计算,来验证前面两种方法的正确性。
用以上三种方法来实现PCA的完整的Python如下:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
|
import numpy as npfrom sklearn.decomposition import PCAimport sys#returns choosing how many main factorsdef index_lst(lst, component=0, rate=0): #component: numbers of main factors #rate: rate of sum(main factors)/sum(all factors) #rate range suggest: (0.8,1) #if you choose rate parameter, return index = 0 or less than len(lst) if component and rate: print('Component and rate must choose only one!') sys.exit(0) if not component and not rate: print('Invalid parameter for numbers of components!') sys.exit(0) elif component: print('Choosing by component, components are %s......'%component) return component else: print('Choosing by rate, rate is %s ......'%rate) for i in range(1, len(lst)): if sum(lst[:i])/sum(lst) >= rate: return i return 0def main(): # test data mat = [[-1,-1,0,2,1],[2,0,0,-1,-1],[2,0,1,1,0]] # simple transform of test data Mat = np.array(mat, dtype='float64') print('Before PCA transforMation, data is:\n', Mat) print('\nMethod 1: PCA by original algorithm:') p,n = np.shape(Mat) # shape of Mat t = np.mean(Mat, 0) # mean of each column # substract the mean of each column for i in range(p): for j in range(n): Mat[i,j] = float(Mat[i,j]-t[j]) # covariance Matrix cov_Mat = np.dot(Mat.T, Mat)/(p-1) # PCA by original algorithm # eigvalues and eigenvectors of covariance Matrix with eigvalues descending U,V = np.linalg.eigh(cov_Mat) # Rearrange the eigenvectors and eigenvalues U = U[::-1] for i in range(n): V[i,:] = V[i,:][::-1] # choose eigenvalue by component or rate, not both of them euqal to 0 Index = index_lst(U, component=2) # choose how many main factors if Index: v = V[:,:Index] # subset of Unitary matrix else: # improper rate choice may return Index=0 print('Invalid rate choice.\nPlease adjust the rate.') print('Rate distribute follows:') print([sum(U[:i])/sum(U) for i in range(1, len(U)+1)]) sys.exit(0) # data transformation T1 = np.dot(Mat, v) # print the transformed data print('We choose %d main factors.'%Index) print('After PCA transformation, data becomes:\n',T1) # PCA by original algorithm using SVD print('\nMethod 2: PCA by original algorithm using SVD:') # u: Unitary matrix, eigenvectors in columns # d: list of the singular values, sorted in descending order u,d,v = np.linalg.svd(cov_Mat) Index = index_lst(d, rate=0.95) # choose how many main factors T2 = np.dot(Mat, u[:,:Index]) # transformed data print('We choose %d main factors.'%Index) print('After PCA transformation, data becomes:\n',T2) # PCA by Scikit-learn pca = PCA(n_components=2) # n_components can be integer or float in (0,1) pca.fit(mat) # fit the model print('\nMethod 3: PCA by Scikit-learn:') print('After PCA transformation, data becomes:') print(pca.fit_transform(mat)) # transformed data main() |
运行以上代码,输出结果为:

这说明用以上三种方法来实现PCA都是可行的。这样我们就能理解PCA的具体实现过程啦~~有兴趣的读者可以用其它语言实现一下哈。
原文链接:https://www.cnblogs.com/jclian91/p/8024101.html
Python使用三种方法实现PCA算法[转]的更多相关文章
- 三种方法实现PCA算法(Python)
主成分分析,即Principal Component Analysis(PCA),是多元统计中的重要内容,也广泛应用于机器学习和其它领域.它的主要作用是对高维数据进行降维.PCA把原先的n个特征用数目 ...
- mac学习Python第一天:安装、软件说明、运行python的三种方法
一.Python安装 从Python官网下载Python 3.x的安装程序,下载后双击运行并安装即可: Python有两个版本,一个是2.x版,一个是3.x版,这两个版本是不兼容的. MAC 系统一般 ...
- Python类三种方法,函数传参,类与实例变量(一)
1 Python的函数传递: 首先所有的变量都可以理解为内存中一个对象的'引用' a = 1 def func(a): a = 2 func(a) print(a) # 1 a = 1 def fun ...
- python字符串连接的三种方法及其效率、适用场景详解
python字符串连接的方法,一般有以下三种:方法1:直接通过加号(+)操作符连接website=& 39;python& 39;+& 39;tab& 39;+& ...
- python每次处理一个字符的三种方法
python每次处理一个字符的三种方法 a_string = "abccdea" print 'the first' for c in a_string: print ord(c) ...
- python更新数据库脚本三种方法
最近项目的两次版本迭代中,根据业务需求的变化,需要对数据库进行更新,两次分别使用了不同的方式进行更新. 第一种:使用python的MySQLdb模块利用原生的sql语句进行更新 import MySQ ...
- python下载文件的三种方法
Python开发中时长遇到要下载文件的情况,最常用的方法就是通过Http利用urllib或者urllib2模块. 当然你也可以利用ftplib从ftp站点下载文件.此外Python还提供了另外一种方法 ...
- 服务器文档下载zip格式 SQL Server SQL分页查询 C#过滤html标签 EF 延时加载与死锁 在JS方法中返回多个值的三种方法(转载) IEnumerable,ICollection,IList接口问题 不吹不擂,你想要的Python面试都在这里了【315+道题】 基于mvc三层架构和ajax技术实现最简单的文件上传 事件管理
服务器文档下载zip格式 刚好这次项目中遇到了这个东西,就来弄一下,挺简单的,但是前台调用的时候弄错了,浪费了大半天的时间,本人也是菜鸟一枚.开始吧.(MVC的) @using Rattan.Co ...
- python网络编程调用recv函数完整接收数据的三种方法
最近在使用python进行网络编程开发一个通用的tcpclient测试小工具.在使用socket进行网络编程中,如何判定对端发送一条报文是否接收完成,是进行socket网络开发必须要考虑的一个问题.这 ...
随机推荐
- CF954I Yet Another String Matching Problem(FFT+并查集)
给定两个字符串\(S,T\) 求\(S\)所有长度为\(|T|\)子串与\(T\)的距离 两个等长的串的距离定义为最少的,将某一个字符全部视作另外一个字符的次数. \(|T|<=|S|<= ...
- Git - Merge: refusing to merge unrelated histories
场景 我在本地有个代码仓库local-A,本地仓库local-A已经和一个远程仓库remote-A关联了. 接着我又在GitHub上新建了一个仓库remote-B,我希望将本地仓库local-A的本地 ...
- layui 单选框选中事件
<div class="layui-form-item" pane=""> <label class="layui-form-lab ...
- siege官方文档(译)(二)
WHY DO I NEED IT? Siege was written for both web developers and web systems administrators. siege是为了 ...
- ajax中get和post区别
参考地址:http://blog.csdn.net/laijieyao/article/details/40426257 首先要明确的事$.get方法是使用GET方式进行异步请求.$.post方法使用 ...
- String的内存和intern()方法
一.关于常量池 字符串在Java中用的非常得多,Jvm为了减少内存开销和提高性能,使用字符串常量池来进行优化. 在jdk1.7之前(不包括1.7),Java的常量池是在方法区的地方,方法区是一个运行时 ...
- [译]Understanding ECMAScript6 迭代器与生成器(未完)
迭代器在许多编程语言中被作为一种更易处理数据集合的方式被使用.在ECMAScript6中,JavaScript添加了迭代器,将其作为此语言的一个重要特征.当再加上新的方法和新的集合类型(比如集合与映射 ...
- python采用sqlachmy购物商城
一.流程图: 二.目录结构: C:\USERS\DAISY\PYCHARMPROJECTS\S12\MARKET │ __init__.py │ __init__.pyc │ ├─backend │ ...
- node+express第一次实战踩坑记录
读万卷书不如行万里路,必须实践出真理! 问题1:项目结构该搭建成什么样? 我一个node.js小白,完全没有想法!再见! 找找别人的项目看看别人放的什么项目结构,再结合自己的项目需求我来想想!
- JS排序--快速排序
用 JavaScript 实现快速排序代码如下: /* * @author liphong * @data 2019/02/24 */ var arr = []; // 需要被排序数组 /* * 分离 ...