Python使用三种方法实现PCA算法[转]
主成分分析(PCA) vs 多元判别式分析(MDA)
PCA和MDA都是线性变换的方法,二者关系密切。在PCA中,我们寻找数据集中最大化方差的成分,在MDA中,我们对类间最大散布的方向更感兴趣。
一句话,通过PCA,我们将整个数据集(不带类别标签)映射到一个子空间中,在MDA中,我们致力于找到一个能够最好区分各类的最佳子集。粗略来讲,PCA是通过寻找方差最大的轴(在一类中,因为PCA把整个数据集当做一类),在MDA中,我们还需要最大化类间散布。
在通常的模式识别问题中,MDA往往在PCA后面。
PCA的主要算法如下:
- 组织数据形式,以便于模型使用;
- 计算样本每个特征的平均值;
- 每个样本数据减去该特征的平均值(归一化处理);
- 求协方差矩阵;
- 找到协方差矩阵的特征值和特征向量;
- 对特征值和特征向量重新排列(特征值从大到小排列);
- 对特征值求取累计贡献率;
- 对累计贡献率按照某个特定比例,选取特征向量集的字迹合;
- 对原始数据(第三步后)。
其中协方差矩阵的分解可以通过按对称矩阵的特征向量来,也可以通过分解矩阵的SVD来实现,而在Scikit-learn中,也是采用SVD来实现PCA算法的。
本文将用三种方法来实现PCA算法,一种是原始算法,即上面所描述的算法过程,具体的计算方法和过程,可以参考:A tutorial on Principal Components Analysis, Lindsay I Smith. 一种是带SVD的原始算法,在Python的Numpy模块中已经实现了SVD算法,并且将特征值从大从小排列,省去了对特征值和特征向量重新排列这一步。最后一种方法是用Python的Scikit-learn模块实现的PCA类直接进行计算,来验证前面两种方法的正确性。
用以上三种方法来实现PCA的完整的Python如下:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
|
import numpy as npfrom sklearn.decomposition import PCAimport sys#returns choosing how many main factorsdef index_lst(lst, component=0, rate=0): #component: numbers of main factors #rate: rate of sum(main factors)/sum(all factors) #rate range suggest: (0.8,1) #if you choose rate parameter, return index = 0 or less than len(lst) if component and rate: print('Component and rate must choose only one!') sys.exit(0) if not component and not rate: print('Invalid parameter for numbers of components!') sys.exit(0) elif component: print('Choosing by component, components are %s......'%component) return component else: print('Choosing by rate, rate is %s ......'%rate) for i in range(1, len(lst)): if sum(lst[:i])/sum(lst) >= rate: return i return 0def main(): # test data mat = [[-1,-1,0,2,1],[2,0,0,-1,-1],[2,0,1,1,0]] # simple transform of test data Mat = np.array(mat, dtype='float64') print('Before PCA transforMation, data is:\n', Mat) print('\nMethod 1: PCA by original algorithm:') p,n = np.shape(Mat) # shape of Mat t = np.mean(Mat, 0) # mean of each column # substract the mean of each column for i in range(p): for j in range(n): Mat[i,j] = float(Mat[i,j]-t[j]) # covariance Matrix cov_Mat = np.dot(Mat.T, Mat)/(p-1) # PCA by original algorithm # eigvalues and eigenvectors of covariance Matrix with eigvalues descending U,V = np.linalg.eigh(cov_Mat) # Rearrange the eigenvectors and eigenvalues U = U[::-1] for i in range(n): V[i,:] = V[i,:][::-1] # choose eigenvalue by component or rate, not both of them euqal to 0 Index = index_lst(U, component=2) # choose how many main factors if Index: v = V[:,:Index] # subset of Unitary matrix else: # improper rate choice may return Index=0 print('Invalid rate choice.\nPlease adjust the rate.') print('Rate distribute follows:') print([sum(U[:i])/sum(U) for i in range(1, len(U)+1)]) sys.exit(0) # data transformation T1 = np.dot(Mat, v) # print the transformed data print('We choose %d main factors.'%Index) print('After PCA transformation, data becomes:\n',T1) # PCA by original algorithm using SVD print('\nMethod 2: PCA by original algorithm using SVD:') # u: Unitary matrix, eigenvectors in columns # d: list of the singular values, sorted in descending order u,d,v = np.linalg.svd(cov_Mat) Index = index_lst(d, rate=0.95) # choose how many main factors T2 = np.dot(Mat, u[:,:Index]) # transformed data print('We choose %d main factors.'%Index) print('After PCA transformation, data becomes:\n',T2) # PCA by Scikit-learn pca = PCA(n_components=2) # n_components can be integer or float in (0,1) pca.fit(mat) # fit the model print('\nMethod 3: PCA by Scikit-learn:') print('After PCA transformation, data becomes:') print(pca.fit_transform(mat)) # transformed data main() |
运行以上代码,输出结果为:

这说明用以上三种方法来实现PCA都是可行的。这样我们就能理解PCA的具体实现过程啦~~有兴趣的读者可以用其它语言实现一下哈。
原文链接:https://www.cnblogs.com/jclian91/p/8024101.html
Python使用三种方法实现PCA算法[转]的更多相关文章
- 三种方法实现PCA算法(Python)
主成分分析,即Principal Component Analysis(PCA),是多元统计中的重要内容,也广泛应用于机器学习和其它领域.它的主要作用是对高维数据进行降维.PCA把原先的n个特征用数目 ...
- mac学习Python第一天:安装、软件说明、运行python的三种方法
一.Python安装 从Python官网下载Python 3.x的安装程序,下载后双击运行并安装即可: Python有两个版本,一个是2.x版,一个是3.x版,这两个版本是不兼容的. MAC 系统一般 ...
- Python类三种方法,函数传参,类与实例变量(一)
1 Python的函数传递: 首先所有的变量都可以理解为内存中一个对象的'引用' a = 1 def func(a): a = 2 func(a) print(a) # 1 a = 1 def fun ...
- python字符串连接的三种方法及其效率、适用场景详解
python字符串连接的方法,一般有以下三种:方法1:直接通过加号(+)操作符连接website=& 39;python& 39;+& 39;tab& 39;+& ...
- python每次处理一个字符的三种方法
python每次处理一个字符的三种方法 a_string = "abccdea" print 'the first' for c in a_string: print ord(c) ...
- python更新数据库脚本三种方法
最近项目的两次版本迭代中,根据业务需求的变化,需要对数据库进行更新,两次分别使用了不同的方式进行更新. 第一种:使用python的MySQLdb模块利用原生的sql语句进行更新 import MySQ ...
- python下载文件的三种方法
Python开发中时长遇到要下载文件的情况,最常用的方法就是通过Http利用urllib或者urllib2模块. 当然你也可以利用ftplib从ftp站点下载文件.此外Python还提供了另外一种方法 ...
- 服务器文档下载zip格式 SQL Server SQL分页查询 C#过滤html标签 EF 延时加载与死锁 在JS方法中返回多个值的三种方法(转载) IEnumerable,ICollection,IList接口问题 不吹不擂,你想要的Python面试都在这里了【315+道题】 基于mvc三层架构和ajax技术实现最简单的文件上传 事件管理
服务器文档下载zip格式 刚好这次项目中遇到了这个东西,就来弄一下,挺简单的,但是前台调用的时候弄错了,浪费了大半天的时间,本人也是菜鸟一枚.开始吧.(MVC的) @using Rattan.Co ...
- python网络编程调用recv函数完整接收数据的三种方法
最近在使用python进行网络编程开发一个通用的tcpclient测试小工具.在使用socket进行网络编程中,如何判定对端发送一条报文是否接收完成,是进行socket网络开发必须要考虑的一个问题.这 ...
随机推荐
- 掌握MySQL数据库这些优化技巧,事半功倍!
一个成熟的数据库架构并不是一开始设计就具备高可用.高伸缩等特性的,它是随着用户量的增加,基础架构才逐渐完善.这篇文章主要谈谈MySQL数据库在发展周期中所面临的问题及优化方案,暂且抛开前端应用不说,大 ...
- with rollup
实验吧的一道ctf题,这两天无聊,做做ctf题.在实验吧被一道也题卡了好久. 页面很简单就是一个登陆页面,按照之前的经验觉得应该是注入吧.再看题猜测应该是绕waf之类的. 查看页面源码找到了提供的源代 ...
- Codeforces 1119E(贪心)
题目传送 贪心方法 按边从小到大扫,先凑3个,没凑足的记录一下数量,后面大的优先跟这些凑,俩带走一个,多余的再凑3个,再--就这样走到最后即可. const int maxn = 3e5 + 5; i ...
- springMVC-上传图片
SpringMVC文件上传与下载 上传图片 配置多媒体文件解析器 配置虚拟目录 在tomcat上配置图片虚拟目录,在tomcat下conf/server.xml中添加: <Context doc ...
- python入门之流程控制
if else 格式: if 条件 command1 command2elif 条件: command3 command4 else: command3 command4 注意条件后和else后 ...
- HDU 1028 Ignatius and the Princess III dp整数划分
http://acm.hdu.edu.cn/showproblem.php?pid=1028 dp[i][j]表示数值为i,然后最小拆分的那个数是j的时候的总和. 1 = 1 2 = 1 + 1 . ...
- js 学习网站
1. Mozilla Developer Network(MDN) 这里你可以找到官方的完整的javascript参考,还有许多有用的指导,教程以及文章,从基本javascript使用到最佳实践以及 ...
- Java虚拟机(JVM),JDK,JRE和JVM的区别——通过示例学习Java编程(2)
Java虚拟机(JVM),JDK,JRE和JVM的区别 作者:CHAITANYA SINGH 来源:https://www.koofun.com/pro/kfpostsdetail?kfpostsid ...
- JS实现的图片预览功能
之前的博文有实现过图片上传预览,但那种方法是预览时就将图片上传,会产生很大的浪费空间.找到了之前有人写的用JS实现的图片预览,就说用js将上传的图片显示,上传代码在之前的博文中有写到. 以下是实现的代 ...
- IOS照相
#import <UIKit/UIKit.h> @interface AddPictureViewController : UIViewController<UIImagePicke ...