【数位dp】bzoj3209: 花神的数论题
Description
背景
众所周知,花神多年来凭借无边的神力狂虐各大 OJ、OI、CF、TC …… 当然也包括 CH 啦。
描述
话说花神这天又来讲课了。课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了。
花神的题目是这样的
设 sum(i) 表示 i 的二进制表示中 1 的个数。给出一个正整数 N ,花神要问你
派(Sum(i)),也就是 sum(1)—sum(N) 的乘积。
Input
一个正整数 N。
Output
一个数,答案模 10000007 的值。
Sample Input
3
Sample Output
2
HINT
对于样例一,1*1*2=2;
数据范围与约定
对于 100% 的数据,N≤10^15
题目分析
是一道入门的数位dp(组合数)题。
但是这题结合了很多出题人的恶意,并且具有一定的启示作用。
#include<bits/stdc++.h>
const int MO = ; int ans,pre;
int f[][];
int digit[];
long long n; int qmi(int a, int b)
{
int ret = ;
while (b)
{
if (b&) ret = 1ll*ret*a%MO;
a = 1ll*a*a%MO;
b >>= ;
}
return ret;
}
int main()
{
scanf("%lld",&n);
f[][] = , ans = ;
for (n++; n; n>>=) digit[++digit[]] = n&;
for (int i=; i<=digit[]; i++)
{
f[i][] = ;
for (int j=; j<=i; j++)
f[i][j] = f[i-][j]+f[i-][j-]; //预处理组合数
}
for (int i=digit[]; i; i--)
if (digit[i]){
for (int j=i-; j>=; j--)
ans = 1ll*ans*qmi(pre+j, f[i-][j])%MO;
pre++;
}
printf("%d\n",ans);
return ;
}
最初会自然地想到上面这种dp方法。
但是!这里的细节显然崩坏了。
二进制拆分
int digit[];
二进制拆分时候$digit[]$干嘛开这么小啊……注意要大概开个三倍。
组合数取模
for (int i=; i<=digit[]; i++)
{
f[i][] = ;
for (int j=; j<=i; j++)
f[i][j] = f[i-][j]+f[i-][j-];
}
这里组合数不取模显然是会溢出的。但是,重点是取什么模呢?可能会不假思索地%1e7+7,然而实际上1e7+7并不是一个素数,所以这里要回到欧拉定理
,我们有$φ(1e7+7)=9988440$。再者就是注意这里只有组合数需要对$φ(1e7+7)$取模。
溢出会RE;或是莫名其妙TLE。
dp的转移
for (int i=digit[]; i; i--)
if (digit[i]){
for (int j=i-; j>=; j--)
ans = 1ll*ans*qmi(pre+j, f[i-][j])%MO;
pre++;
}
注意到这里内层的$j>=1$,但是由于后面的元素可以不选,事实上$j$应该$>=0$才对。
手调时候会发现当$j=0,pre=0$时,$ans$就等于0了。
所以还要在快速幂里特判一层: if (!a) return ; 。
正确代码
#include<bits/stdc++.h>
const int MO = ; int ans,pre;
int f[][];
int digit[];
long long n; int qmi(int a, int b)
{
if (!a) return ;
int ret = ;
while (b)
{
if (b&) ret = 1ll*ret*a%MO;
a = 1ll*a*a%MO;
b >>= ;
}
return ret;
}
int main()
{
scanf("%lld",&n);
f[][] = , ans = ;
for (n++; n; n>>=) digit[++digit[]] = n&;
for (int i=; i<=digit[]; i++)
{
f[i][] = ;
for (int j=; j<=i; j++)
f[i][j] = (f[i-][j]+f[i-][j-])%;
}
for (int i=digit[]; i; i--)
if (digit[i]){
for (int j=i-; j>=; j--)
ans = 1ll*ans*qmi(pre+j, f[i-][j])%MO;
pre++;
}
printf("%d\n",ans);
return ;
}
END
【数位dp】bzoj3209: 花神的数论题的更多相关文章
- BZOJ3209 花神的数论题 【组合数学+数位DP+快速幂】*
BZOJ3209 花神的数论题 Description 背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 描述 话说花神这天又来讲课了.课后照例有 ...
- [bzoj3209]花神的数论题_数位dp
花神的数论题 bzoj-3209 题目大意:sum(i)表示i的二进制表示中1的个数,求$\prod\limits_{i=1}^n sum(i)$ 注释:$1\le n\le 10^{15}$. 想法 ...
- [Bzoj3209]花神的数论题(数位dp)
3209: 花神的数论题 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2633 Solved: 1182[Submit][Status][Disc ...
- BZOJ3209: 花神的数论题(数位DP)
题目: 3209: 花神的数论题 解析: 二进制的数位DP 因为\([1,n]\)中每一个数对应的二进制数是唯一的,我们枚举\(1\)的个数\(k\),计算有多少个数的二进制中有\(k\)个\(1\) ...
- [BZOJ3209]花神的数论题 组合数+快速幂
3209: 花神的数论题 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2498 Solved: 1129[Submit][Status][Disc ...
- bzoj3209 花神的数论题——数位dp
题目大意: 花神的题目是这样的 设 sum(i) 表示 i 的二进制表示中 1 的个数.给出一个正整数 N ,花神要问你 派(Sum(i)),也就是 sum(1)—sum(N) 的乘积. 要对1000 ...
- [bzoj3209][花神的数论题] (数位dp+费马小定理)
Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了. ...
- bzoj3209 花神的数论题 (二进制数位dp)
二进制数位dp,就是把原本的数字转化成二进制而以,原来是10进制,现在是二进制来做,没有想像的那么难 不知到自己怎么相出来的...感觉,如果没有一个明确的思路,就算做出来了,也并不能锻炼自己的能力,因 ...
- BZOJ3209 花神的数论题
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...
随机推荐
- 黑马Lambda表达式学习 Stream流 函数式接口 Lambda表达式 方法引用
- PostgreSQL - pgAdmin4远程连接数据库
前言 PostgreSQL在安装的时候自带的pgAdmin这个可视化工具,自从将PostgreSQL9升级到了10版本后,自带的pgAdmin也从3升级到了4版本.pgAdmin4的变化非常巨大,刚接 ...
- [Chrome](CSS) 解决Chrome font-size 小于 12px 无效
Chrome中 font-size 小于 12px 会失效. 解决的办法一种是: -webkit-text-size-adjust:none; (但是Chrome27之后取消了支持) 利用CSS3的缩 ...
- #13:人十我一Orz——6
水题放送,写得依旧丑: #include <cstdio> #include <cstring> #include <cmath> #include <alg ...
- AtCoder Regular Contest 078 D
D - Fennec VS. Snuke Time limit : 2sec / Memory limit : 256MB Score : 400 points Problem Statement F ...
- PHP采集利器 Snoopy 试用心得
Snoopy是什么? Snoopy是一个php类,用来模仿web浏览器的功能,它能完成获取网页内容和发送表单的任务. Snoopy的一些特点: * 方便抓取网页的内容 * 方便抓取网页的文本内容 (去 ...
- shell脚本解析json文件
安装jq扩展 下载:jq 根据自己系统下载对应的文件 cp jq-linux64 /usr/bin cd /usr/bin mv jq-linux64 jq chmod +x jq 使用方法 假设有个 ...
- 剖析 Rails 3 MVC 中的数据传递
引用链接:https://www.ibm.com/developerworks/cn/web/1108_linhx_rails3mvc/ 如果读者已经开发过基于 Rails 的应用,但对其 MVC 间 ...
- hihocoder1032 最长回文子串
思路: manacher模板. 实现: #include <iostream> #include <cstring> using namespace std; ]; strin ...
- P3375 【模板】KMP字符串匹配(全程注释,简单易懂)
题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果你不知道这是什么意思也不要问,去百度搜[ ...