loj#6062. 「2017 山东一轮集训 Day2」Pair hall定理+线段树
题意:给出一个长度为 n的数列 a和一个长度为 m 的数列 b,求 a有多少个长度为 m的连续子数列能与 b匹配。两个数列可以匹配,当且仅当存在一种方案,使两个数列中的数可以两两配对,两个数可以配对当且仅当它们的和不小于 h。
题解:先把b排序,要想能匹配,由hall定理,b的每个子集(大小为x)都至少有x条连向b,bi递增,和bi连的边也递增,那么当bi连边大于等于i时即可,所以当min(bi-i)>=0时满足条件
线性扫一遍即可,每个a二分b更新线段树即可
//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define ld long double
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
//#define cd complex<double>
#define ull unsigned long long
//#define base 1000000000000000000
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
template<typename T>
inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>
inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}
using namespace std;
const double eps=1e-8;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=150000+10,maxn=50000+10,inf=0x3f3f3f3f;
int mi[N<<2],lazy[N<<2],a[N],b[N];
void pushup(int rt)
{
mi[rt]=MIN(mi[rt<<1],mi[rt<<1|1]);
}
void pushdown(int rt)
{
if(lazy[rt]!=0)
{
mi[rt<<1]+=lazy[rt];
mi[rt<<1|1]+=lazy[rt];
lazy[rt<<1]+=lazy[rt];
lazy[rt<<1|1]+=lazy[rt];
lazy[rt]=0;
}
}
void build(int l,int r,int rt)
{
lazy[rt]=0;
if(l==r){mi[rt]=-l;return ;}
int m=(l+r)>>1;
build(ls),build(rs);
pushup(rt);
}
void update(int L,int R,int x,int l,int r,int rt)
{
if(L<=l&&r<=R)
{
mi[rt]+=x;
lazy[rt]+=x;
return ;
}
int m=(l+r)>>1;
pushdown(rt);
if(L<=m)update(L,R,x,ls);
if(m<R)update(L,R,x,rs);
pushup(rt);
}
int main()
{
int n,m,h;
scanf("%d%d%d",&n,&m,&h);
for(int i=1;i<=m;i++)scanf("%d",&b[i]);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
sort(b+1,b+1+m);
build(1,m,1);
int ans=0;
for(int i=1;i<=m;i++)
{
int p=lower_bound(b+1,b+1+m,h-a[i])-b;
// printf("%d %d ----\n",i,p);
if(p<=m)update(p,m,1,1,m,1);
if(mi[1]>=0)ans++;
}
for(int i=m+1;i<=n;i++)
{
int p=lower_bound(b+1,b+1+m,h-a[i])-b;
if(p<=m)update(p,m,1,1,m,1);
p=lower_bound(b+1,b+1+m,h-a[i-m])-b;
if(p<=m)update(p,m,-1,1,m,1);
if(mi[1]>=0)ans++;
}
printf("%d\n",ans);
return 0;
}
/********************
********************/
loj#6062. 「2017 山东一轮集训 Day2」Pair hall定理+线段树的更多相关文章
- LOJ #6062. 「2017 山东一轮集训 Day2」Pair
这是Lowest JN dalao昨天上课讲的一道神题其实是水题啦 题意很简单,我们也很容易建模转化出一个奇怪的东西 首先我们对b进行sort,然后我们就可以通过二分来判断出这个数可以和哪些数配对 然 ...
- ACM-ICPC 2017 西安赛区现场赛 K. LOVER II && LibreOJ#6062. 「2017 山东一轮集训 Day2」Pair(线段树)
题目链接:西安:https://nanti.jisuanke.com/t/20759 (计蒜客的数据应该有误,题目和 LOJ 的大同小异,题解以 LOJ 为准) LOJ:https://l ...
- 【LOJ6062】「2017 山东一轮集训 Day2」Pair(线段树套路题)
点此看题面 大致题意: 给出一个长度为\(n\)的数列\(a\)和一个长度为\(m\)的数列\(b\),求\(a\)有多少个长度为\(m\)的子串与\(b\)匹配.数列匹配指存在一种方案使两个数列中的 ...
- LOJ6062「2017 山东一轮集训 Day2」Pair(Hall定理,线段树)
题面 给出一个长度为 n n n 的数列 { a i } \{a_i\} {ai} 和一个长度为 m m m 的数列 { b i } \{b_i\} {bi},求 { a i } \{a_i\} ...
- Loj #6069. 「2017 山东一轮集训 Day4」塔
Loj #6069. 「2017 山东一轮集训 Day4」塔 题目描述 现在有一条 $ [1, l] $ 的数轴,要在上面造 $ n $ 座塔,每座塔的坐标要两两不同,且为整点. 塔有编号,且每座塔都 ...
- Loj #6073.「2017 山东一轮集训 Day5」距离
Loj #6073.「2017 山东一轮集训 Day5」距离 Description 给定一棵 \(n\) 个点的边带权的树,以及一个排列$ p\(,有\)q $个询问,给定点 \(u, v, k\) ...
- Loj 6068. 「2017 山东一轮集训 Day4」棋盘
Loj 6068. 「2017 山东一轮集训 Day4」棋盘 题目描述 给定一个 $ n \times n $ 的棋盘,棋盘上每个位置要么为空要么为障碍.定义棋盘上两个位置 $ (x, y),(u, ...
- LOJ #6074. 「2017 山东一轮集训 Day6」子序列
#6074. 「2017 山东一轮集训 Day6」子序列 链接 分析: 首先设f[i][j]为到第i个点,结尾字符是j的方案数,这个j一定是从i往前走,第一个出现的j,因为这个j可以代替掉前面所有j. ...
- loj #6077. 「2017 山东一轮集训 Day7」逆序对
#6077. 「2017 山东一轮集训 Day7」逆序对 题目描述 给定 n,k n, kn,k,请求出长度为 n nn 的逆序对数恰好为 k kk 的排列的个数.答案对 109+7 10 ^ 9 ...
随机推荐
- P3301 [SDOI2013]方程
思路 容斥的挺好的练习题 对于第二个条件,可以直接使m减去suma2,使得第二个条件舍去,然后m再减去n,使得问题转化成有n1个变量要满足小于等于某个数的条件,其他的随便取,求整数解的个数 对n1,以 ...
- P4721【模板】分治 FFT
瞎扯 虽然说是FFT但是还是写了一发NTT(笑) 然后忘了IDFT之后要除个n懵逼了好久 以及递归的时候忘了边界无限RE 思路 朴素算法 分治FFT 考虑到题目要求求这样的一个式子 \[ F_x=\S ...
- P4390 [BOI2007]Mokia 摩基亚(cdq分治)
一样是cdq的板子 照着园丁的烦恼就好了 代码 #include <cstdio> #include <cstring> #include <algorithm> ...
- SalGAN: Visual saliency prediction with generative adversarial networks
SalGAN: Visual saliency prediction with generative adversarial networks 2017-03-17 摘要:本文引入了对抗网络的对抗训练 ...
- (zhuan) Deep Deterministic Policy Gradients in TensorFlow
Deep Deterministic Policy Gradients in TensorFlow AUG 21, 2016 This blog from: http://pemami49 ...
- 良品铺子:“新零售”先锋的IT必经之路
良品铺子:“新零售”先锋的IT必经之路 云计算 大数据 CIO班 CIO 互联网+ 物联网 电子政务 2017-12-29 09:25:34 来源:互联网抢沙发 摘要:2017年被称为“新零售”元年 ...
- Linux命令之du命令
du命令 显示文件或目录所占用的磁盘空间. 命令格式: du [option] 文件/目录 -h 输出文件系统分区使用的情况,例如:10KB,10MB,10GB等 -s 显示文件或整个目录的大小,默认 ...
- 聚类算法——KMEANS算法
聚类概念 无监督问题:我们手里没有标签 聚类:相似的东西分到一组 难点:如何评估,如何调参 基本概念 要得到簇的个数,需要指定K值 质心:均值,即向量各维取平均即可 距离的度量:常用欧几里得距离和余弦 ...
- Java 基础功底
Java 基础语法特性: 首先了解并做好Java Web 开发环境配置(包含 JDK 的配置)是非常必要的.其中 CLASSPATH 的值开始必须包含 ".",否则用 javac ...
- R语言可视化学习笔记之添加p-value和显著性标记--转载
https://www.jianshu.com/p/b7274afff14f?from=timeline #先加载包 library(ggpubr) #加载数据集ToothGrowth data(&q ...