loj#6062. 「2017 山东一轮集训 Day2」Pair hall定理+线段树
题意:给出一个长度为 n的数列 a和一个长度为 m 的数列 b,求 a有多少个长度为 m的连续子数列能与 b匹配。两个数列可以匹配,当且仅当存在一种方案,使两个数列中的数可以两两配对,两个数可以配对当且仅当它们的和不小于 h。
题解:先把b排序,要想能匹配,由hall定理,b的每个子集(大小为x)都至少有x条连向b,bi递增,和bi连的边也递增,那么当bi连边大于等于i时即可,所以当min(bi-i)>=0时满足条件
线性扫一遍即可,每个a二分b更新线段树即可
//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define ld long double
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
//#define cd complex<double>
#define ull unsigned long long
//#define base 1000000000000000000
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
template<typename T>
inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>
inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}
using namespace std;
const double eps=1e-8;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=150000+10,maxn=50000+10,inf=0x3f3f3f3f;
int mi[N<<2],lazy[N<<2],a[N],b[N];
void pushup(int rt)
{
mi[rt]=MIN(mi[rt<<1],mi[rt<<1|1]);
}
void pushdown(int rt)
{
if(lazy[rt]!=0)
{
mi[rt<<1]+=lazy[rt];
mi[rt<<1|1]+=lazy[rt];
lazy[rt<<1]+=lazy[rt];
lazy[rt<<1|1]+=lazy[rt];
lazy[rt]=0;
}
}
void build(int l,int r,int rt)
{
lazy[rt]=0;
if(l==r){mi[rt]=-l;return ;}
int m=(l+r)>>1;
build(ls),build(rs);
pushup(rt);
}
void update(int L,int R,int x,int l,int r,int rt)
{
if(L<=l&&r<=R)
{
mi[rt]+=x;
lazy[rt]+=x;
return ;
}
int m=(l+r)>>1;
pushdown(rt);
if(L<=m)update(L,R,x,ls);
if(m<R)update(L,R,x,rs);
pushup(rt);
}
int main()
{
int n,m,h;
scanf("%d%d%d",&n,&m,&h);
for(int i=1;i<=m;i++)scanf("%d",&b[i]);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
sort(b+1,b+1+m);
build(1,m,1);
int ans=0;
for(int i=1;i<=m;i++)
{
int p=lower_bound(b+1,b+1+m,h-a[i])-b;
// printf("%d %d ----\n",i,p);
if(p<=m)update(p,m,1,1,m,1);
if(mi[1]>=0)ans++;
}
for(int i=m+1;i<=n;i++)
{
int p=lower_bound(b+1,b+1+m,h-a[i])-b;
if(p<=m)update(p,m,1,1,m,1);
p=lower_bound(b+1,b+1+m,h-a[i-m])-b;
if(p<=m)update(p,m,-1,1,m,1);
if(mi[1]>=0)ans++;
}
printf("%d\n",ans);
return 0;
}
/********************
********************/
loj#6062. 「2017 山东一轮集训 Day2」Pair hall定理+线段树的更多相关文章
- LOJ #6062. 「2017 山东一轮集训 Day2」Pair
这是Lowest JN dalao昨天上课讲的一道神题其实是水题啦 题意很简单,我们也很容易建模转化出一个奇怪的东西 首先我们对b进行sort,然后我们就可以通过二分来判断出这个数可以和哪些数配对 然 ...
- ACM-ICPC 2017 西安赛区现场赛 K. LOVER II && LibreOJ#6062. 「2017 山东一轮集训 Day2」Pair(线段树)
题目链接:西安:https://nanti.jisuanke.com/t/20759 (计蒜客的数据应该有误,题目和 LOJ 的大同小异,题解以 LOJ 为准) LOJ:https://l ...
- 【LOJ6062】「2017 山东一轮集训 Day2」Pair(线段树套路题)
点此看题面 大致题意: 给出一个长度为\(n\)的数列\(a\)和一个长度为\(m\)的数列\(b\),求\(a\)有多少个长度为\(m\)的子串与\(b\)匹配.数列匹配指存在一种方案使两个数列中的 ...
- LOJ6062「2017 山东一轮集训 Day2」Pair(Hall定理,线段树)
题面 给出一个长度为 n n n 的数列 { a i } \{a_i\} {ai} 和一个长度为 m m m 的数列 { b i } \{b_i\} {bi},求 { a i } \{a_i\} ...
- Loj #6069. 「2017 山东一轮集训 Day4」塔
Loj #6069. 「2017 山东一轮集训 Day4」塔 题目描述 现在有一条 $ [1, l] $ 的数轴,要在上面造 $ n $ 座塔,每座塔的坐标要两两不同,且为整点. 塔有编号,且每座塔都 ...
- Loj #6073.「2017 山东一轮集训 Day5」距离
Loj #6073.「2017 山东一轮集训 Day5」距离 Description 给定一棵 \(n\) 个点的边带权的树,以及一个排列$ p\(,有\)q $个询问,给定点 \(u, v, k\) ...
- Loj 6068. 「2017 山东一轮集训 Day4」棋盘
Loj 6068. 「2017 山东一轮集训 Day4」棋盘 题目描述 给定一个 $ n \times n $ 的棋盘,棋盘上每个位置要么为空要么为障碍.定义棋盘上两个位置 $ (x, y),(u, ...
- LOJ #6074. 「2017 山东一轮集训 Day6」子序列
#6074. 「2017 山东一轮集训 Day6」子序列 链接 分析: 首先设f[i][j]为到第i个点,结尾字符是j的方案数,这个j一定是从i往前走,第一个出现的j,因为这个j可以代替掉前面所有j. ...
- loj #6077. 「2017 山东一轮集训 Day7」逆序对
#6077. 「2017 山东一轮集训 Day7」逆序对 题目描述 给定 n,k n, kn,k,请求出长度为 n nn 的逆序对数恰好为 k kk 的排列的个数.答案对 109+7 10 ^ 9 ...
随机推荐
- (转)renren-fast解读(一)
(二期)8.renren-fast项目解读(一) [课程八]预防xss...注入.xmind0.2MB [课程八预习]开...解读.xmind0.5MB 课程八_日志处理与...模块.xmind0.2 ...
- 题解——洛谷P3812【模板】线性基
学了下线性基 使用好像并不复杂 打了板子 但是要注意位运算优先级 #include <cstdio> #include <algorithm> #include <cst ...
- Vue.extend构造器和$mount实例构造组件后可以用$destroy()进行卸载,$forceUpdate()进行更新,$nextTick()数据修改
html <div id="app"> </div> <p><button onclick="destroy()"&g ...
- 使用Python制作第一个爬虫程序
用到的开发环境 IDE:pycharm python version :2.7 掌握的知识: Pycharm 还能更改Python的版本 代码如下:(重点就是 正则表达式的学习) # !/u ...
- ISTQB学习笔记
学习ISTQB大纲此文记录初次阅读时不够明确的地方 第一章:软件测试基础1. 引起软件缺陷的原因人都会犯错误(error,mistake),因此人设计的代码或文档中会引入缺陷(defect, faul ...
- 【译】第10节---数据注解-Key
原文:http://www.entityframeworktutorial.net/code-first/key-dataannotations-attribute-in-code-first.asp ...
- 51nod 1422 沙拉酱前缀
http://www.51nod.com/onlineJudge/questionCode.html#problemId=1422¬iceId=399940 题意: 思路: 先把所有步骤 ...
- HDU 3400 Line belt (三分套三分)
http://acm.split.hdu.edu.cn/showproblem.php?pid=3400 题意: 有两条带子ab和cd,在ab上的速度为p,在cd上的速度为q,在其它地方的速度为r.现 ...
- JAVA基础之复识二
JAVA语言 未经本人允许禁止转载或使用 基础知识:JAVA数据类型,运算符,流程控制等 注释: // 单行注释 /* 多行连续注释 ... */ /** 文档注释,该类型的注释会生成一个html文件 ...
- 【Django】Django-REST-Framework
[创建简单的API] 1. cmd.exe >django-admin startproject django_rest>cd django_rest\django_rest>pyt ...