【Java】 剑指offer(9) 斐波那契数列及青蛙跳台阶问题
本文参考自《剑指offer》一书,代码采用Java语言。
题目
写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项。
思路
如果直接写递归函数,由于会出现很多重复计算,效率非常底,不采用。
要避免重复计算,采用从下往上计算,可以把计算过了的保存起来,下次要计算时就不必重复计算了:先由f(0)和f(1)计算f(2),再由f(1)和f(2)计算f(3)……以此类推就行了,计算第n个时,只要保存第n-1和第n-2项就可以了。
测试用例
1.功能测试(3,5,8等)
2.边界值测试(0,1,2等)
3.性能测试(50,100等)
4.特殊(负数)
完整Java代码
(含测试代码)
/**
*
* @Description 斐波那契数列
*
* @author yongh
* @date 2018年9月13日 下午7:19:36
*/ // 题目:写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项。 public class Fibonacci {
public long Fib(long n) {
if(n<0)
throw new RuntimeException("下标错误,应从0开始!");
if (n == 0)
return 0;
if (n == 1)
return 1;
long prePre = 0;
long pre = 1;
long result = 1;
for (long i = 2; i <= n; i++) {
result = prePre + pre;
prePre = pre;
pre = result;
}
return result;
} //附:缩略版(考虑到代码的可读性,其实还是上面的方法比较好)
public long Fib2(long n) {
if(n<0)
throw new RuntimeException("下标错误,应从0开始!");
if (n == 0)
return 0;
if (n == 1)
return 1;
long pre = 0;
long result = 1;
for (long i = 2; i <= n; i++) {
result += pre;
pre = result - pre;
}
return result;
} public static void main(String[] args) {
Fibonacci demo = new Fibonacci();
System.out.println(demo.Fib(0));
System.out.println(demo.Fib(1));
System.out.println(demo.Fib(2));
System.out.println(demo.Fib(8));
System.out.println(demo.Fib(50));
System.out.println(demo.Fib(100));
System.out.println(demo.Fib(-5));
}
}
Exception in thread "main" java.lang.RuntimeException: 下标错误,应从0开始!
Fibonacci
时间复杂度:O(n)
拓展
时间复杂度为O(longn)的解法
斐波那契数列有以下公式(可由数学归纳法推导得到):
由上式可知,求f(n),只需要对矩阵求(n-1)次方即可,但此时时间复杂度仍为O(n)。利用乘方的性质
利用递归的思路计算乘方,即可将时间复杂度降低为O(longn)。这里给出对乘方函数的递归代码(引用):
Matrix2By2 MatrixPower(unsigned int n)
{
assert(n > 0); Matrix2By2 matrix;
if(n == 1)
{
matrix = Matrix2By2(1, 1, 1, 0);
}
else if(n % 2 == 0)
{
matrix = MatrixPower(n / 2);
matrix = MatrixMultiply(matrix, matrix);
}
else if(n % 2 == 1)
{
matrix = MatrixPower((n - 1) / 2);
matrix = MatrixMultiply(matrix, matrix);
matrix = MatrixMultiply(matrix, Matrix2By2(1, 1, 1, 0));
} return matrix;
}
青蛙跳台阶问题
题目1:一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
将跳法总数记为f(n),可以知道f(1)=1,f(2)=2。当n>2时,第一次跳1级的话,还有f(n-1)种跳法;第一次跳2级的话,还有f(n-2)种跳法,所以可以推得f(n)=f(n-1)+f(n-2),即为斐波那契数列。
题目2:一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
解法1:
当n=1时,f(1)=1。
当n大于1时,归纳总结可知:跳上n级台阶,第一次跳1级的话,有f(n-1)种方法;第一次跳2级的话,有f(n-2)种方法……第一次跳n-1级的话,有f(1)种方法;直接跳n级的话,有1种方法,所以可以得到如下公式:
f(n) = f(n-1)+f(n-2)+......f(1)+1 (n≥2)
f(n-1) = f(n-2)+f(n-3)+.....f(1)+1 (n>2)
由上面两式相减可得,f(n)-f(n-1)=f(n-1),即f(n) = 2*f(n-1) (n>2)
最终结合f(1)和f(2),可以推得:f(n)=2^(n-1)
解法2:
假设跳到第n级总共需要k次,说明要在中间n-1级台阶中选出任意k-1个台阶,即C(n-1,k-1)种方法。
所以:跳1次就跳上n级台阶,需要C(n-1,0)种方法;跳2次需要C(n-1,1)种方法……跳n次需要C(n-1,n-1)种方法
总共需要跳C(n-1,0)+C(n-1,1)+C(n-1,2)+……C(n-1,n-1)=2^(n-1)种方法。
解法3:
除了必须到达最后一级台阶,第1级到第n-1级台阶都可以有选择的跳,也就是说对于这n-1个台阶来说,每个台阶都有跳上和不跳上2种情况,所以一共有2^(n-1)种方法。
矩形覆盖问题
题目:用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
当n = 1时,有一种方法。
当n = 2时,有两种方法。
当n >= 3时,和斐波那契数列类似。第一步竖着放,有f(n-1)种方法;第一步横着放,有f(n-2)种方法。所以f(n)=f(n-1)+f(n-2)。
收获
1.求n次方时,可以利用递归来降低时间复杂度
2.当遇到涉及n的问题时(类似青蛙跳台阶问题),不要紧张,可以进行归纳分析,特别注意f(n)与f(n-1)、f(n-2)等的关联,从而找出规律,进行合理建模。
3.return (int)Math.pow(2,target-1);
1) 转int类型
2)pow不是power
【Java】 剑指offer(9) 斐波那契数列及青蛙跳台阶问题的更多相关文章
- (1)剑指Offer之斐波那契数列问题和跳台阶问题
一 斐波那契数列 题目描述: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项. n<=39 问题分析: 可以肯定的是这一题通过递归的方式是肯定能做出来,但是这样会有 ...
- 《剑指offer》斐波那契数列
本题来自<剑指offer> 斐波那契数列 矩阵覆盖 题目一: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0).n<=39 思路: ...
- 剑指offer:斐波那契数列
目录 题目 解题思路 具体代码 题目 题目链接 剑指offer:斐波那契数列 题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n< ...
- 力扣 - 剑指 Offer 10- I. 斐波那契数列
题目 剑指 Offer 10- I. 斐波那契数列 思路1(递归 / 自顶向下) 这题是很常见的一道入门递归题,可以采用自顶向下的递归方法,比如我们要求第n个位置的值,根据斐波那契数列的定义fib(n ...
- Go语言实现:【剑指offer】斐波那契数列
该题目来源于牛客网<剑指offer>专题. 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0) n<=39 Go语言实现: 递归: ...
- 剑指offer三: 斐波拉契数列
斐波拉契数列是指这样一个数列: F(1)=1; F(2)=1; F(n)=F(n-1)+F(n); public class Solution { public int Fibonacci(int n ...
- 剑指offer 07斐波那契数列
现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0).n<=39 java版本: public class Solution { public static void m ...
- 剑指Offer 7. 斐波那契数列 (递归)
题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n<=39 题目地址 https://www.nowcoder.com/prac ...
- 《剑指offer》-斐波那契数列
大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项. n<=39 这么直接的问fibonacci,显然是迭代计算.递归的问题在于重复计算,而迭代则避免了这一点:递归是自 ...
随机推荐
- 20155334 2016-2017-2 《Java程序设计》第五周学习总结
20155334 2016-2017-2 <Java程序设计>第五周学习总结 教材学习内容总结 第八章:异常处理 Java中所有错误都会被打包为对象,在编程的时候会遇到因各种原因而导致的错 ...
- django错误笔记(xadmin)——AttributeError: 'Settings' object has no attribute 'TEMPLATE_CONTEXT_PROCESSORS'
使用Xadmin,执行makemigrations和migrate时运行报错提示: AttributeError: 'Settings' object has no attribute 'TEMPLA ...
- pytorch中如何使用DataLoader对数据集进行批处理
最近搞了搞minist手写数据集的神经网络搭建,一个数据集里面很多个数据,不能一次喂入,所以需要分成一小块一小块喂入搭建好的网络. pytorch中有很方便的dataloader函数来方便我们进行批处 ...
- POJ3694 Network【连通分量+LCA】
题意: 一个无向图可以有重边,下面q个操作,每次在两个点间连接一条有向边,每次连接后整个无向图还剩下多少桥(注意是要考虑之前连了的边,每次回答是在上一次的基础之上). 思路: 首先运行一次Tarjan ...
- 第18月第19天 masonry等分 uilabel sizetofit
1.masonry等分 mas_distributeViewsAlongAxis MASAxisTypeHorizontal 2.uilabel sizetofit +(CGSize)labSizeW ...
- Linux定时任务调度
⒈概述 任务调度:是指系统在某个时间执行的特定的命令或程序 分类:1)系统任务:有些重要的工作必须周而复始的执行,例如病毒扫描等 2)用户任务:个别用户可能希望定时执行某些程序,例如mysql定时备份 ...
- 【CTF WEB】ISCC 2016 web 2题记录
偶然看到的比赛,我等渣渣跟风做两题,剩下的题目工作太忙没有时间继续做. 第1题 sql注入: 题目知识 考察sql注入知识,题目地址:http://101.200.145.44/web1//ind ...
- Linux内存管理5---物理内存管理
1.前言 本文所述关于内存管理的系列文章主要是对陈莉君老师所讲述的内存管理知识讲座的整理. 本讲座主要分三个主题展开对内存管理进行讲解:内存管理的硬件基础.虚拟地址空间的管理.物理地址空间的管理. 本 ...
- Linux下常见音频格式之间的转换方法
Linux下常见音频格式之间的转换方法[转] 下面简单介绍下Linux环境常见音频格式之间的转换方法: MP3 相关工具: lameOGG 相关工具: vorbis-toolsAPE 相关工具: ma ...
- 如何选取一个神经网络中的超参数hyper-parameters
1.什么是超参数 所谓超参数,就是机器学习模型里面的框架参数.比如聚类方法里面类的个数,或者话题模型里面话题的个数等等,都称为超参数.它们跟训练过程中学习的参数(权重)是不一样的,通常是手工设定的,经 ...