【Java】 剑指offer(9) 斐波那契数列及青蛙跳台阶问题
本文参考自《剑指offer》一书,代码采用Java语言。
题目
写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项。

思路
如果直接写递归函数,由于会出现很多重复计算,效率非常底,不采用。
要避免重复计算,采用从下往上计算,可以把计算过了的保存起来,下次要计算时就不必重复计算了:先由f(0)和f(1)计算f(2),再由f(1)和f(2)计算f(3)……以此类推就行了,计算第n个时,只要保存第n-1和第n-2项就可以了。
测试用例
1.功能测试(3,5,8等)
2.边界值测试(0,1,2等)
3.性能测试(50,100等)
4.特殊(负数)
完整Java代码
(含测试代码)
/**
*
* @Description 斐波那契数列
*
* @author yongh
* @date 2018年9月13日 下午7:19:36
*/ // 题目:写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项。 public class Fibonacci {
public long Fib(long n) {
if(n<0)
throw new RuntimeException("下标错误,应从0开始!");
if (n == 0)
return 0;
if (n == 1)
return 1;
long prePre = 0;
long pre = 1;
long result = 1;
for (long i = 2; i <= n; i++) {
result = prePre + pre;
prePre = pre;
pre = result;
}
return result;
} //附:缩略版(考虑到代码的可读性,其实还是上面的方法比较好)
public long Fib2(long n) {
if(n<0)
throw new RuntimeException("下标错误,应从0开始!");
if (n == 0)
return 0;
if (n == 1)
return 1;
long pre = 0;
long result = 1;
for (long i = 2; i <= n; i++) {
result += pre;
pre = result - pre;
}
return result;
} public static void main(String[] args) {
Fibonacci demo = new Fibonacci();
System.out.println(demo.Fib(0));
System.out.println(demo.Fib(1));
System.out.println(demo.Fib(2));
System.out.println(demo.Fib(8));
System.out.println(demo.Fib(50));
System.out.println(demo.Fib(100));
System.out.println(demo.Fib(-5));
}
}
Exception in thread "main" java.lang.RuntimeException: 下标错误,应从0开始!
Fibonacci
时间复杂度:O(n)
拓展
时间复杂度为O(longn)的解法
斐波那契数列有以下公式(可由数学归纳法推导得到):

由上式可知,求f(n),只需要对矩阵求(n-1)次方即可,但此时时间复杂度仍为O(n)。利用乘方的性质

利用递归的思路计算乘方,即可将时间复杂度降低为O(longn)。这里给出对乘方函数的递归代码(引用):
Matrix2By2 MatrixPower(unsigned int n)
{
assert(n > 0); Matrix2By2 matrix;
if(n == 1)
{
matrix = Matrix2By2(1, 1, 1, 0);
}
else if(n % 2 == 0)
{
matrix = MatrixPower(n / 2);
matrix = MatrixMultiply(matrix, matrix);
}
else if(n % 2 == 1)
{
matrix = MatrixPower((n - 1) / 2);
matrix = MatrixMultiply(matrix, matrix);
matrix = MatrixMultiply(matrix, Matrix2By2(1, 1, 1, 0));
} return matrix;
}
青蛙跳台阶问题
题目1:一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
将跳法总数记为f(n),可以知道f(1)=1,f(2)=2。当n>2时,第一次跳1级的话,还有f(n-1)种跳法;第一次跳2级的话,还有f(n-2)种跳法,所以可以推得f(n)=f(n-1)+f(n-2),即为斐波那契数列。
题目2:一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
解法1:
当n=1时,f(1)=1。
当n大于1时,归纳总结可知:跳上n级台阶,第一次跳1级的话,有f(n-1)种方法;第一次跳2级的话,有f(n-2)种方法……第一次跳n-1级的话,有f(1)种方法;直接跳n级的话,有1种方法,所以可以得到如下公式:
f(n) = f(n-1)+f(n-2)+......f(1)+1 (n≥2)
f(n-1) = f(n-2)+f(n-3)+.....f(1)+1 (n>2)
由上面两式相减可得,f(n)-f(n-1)=f(n-1),即f(n) = 2*f(n-1) (n>2)
最终结合f(1)和f(2),可以推得:f(n)=2^(n-1)
解法2:
假设跳到第n级总共需要k次,说明要在中间n-1级台阶中选出任意k-1个台阶,即C(n-1,k-1)种方法。
所以:跳1次就跳上n级台阶,需要C(n-1,0)种方法;跳2次需要C(n-1,1)种方法……跳n次需要C(n-1,n-1)种方法
总共需要跳C(n-1,0)+C(n-1,1)+C(n-1,2)+……C(n-1,n-1)=2^(n-1)种方法。
解法3:
除了必须到达最后一级台阶,第1级到第n-1级台阶都可以有选择的跳,也就是说对于这n-1个台阶来说,每个台阶都有跳上和不跳上2种情况,所以一共有2^(n-1)种方法。
矩形覆盖问题
题目:用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
当n = 1时,有一种方法。
当n = 2时,有两种方法。
当n >= 3时,和斐波那契数列类似。第一步竖着放,有f(n-1)种方法;第一步横着放,有f(n-2)种方法。所以f(n)=f(n-1)+f(n-2)。
收获
1.求n次方时,可以利用递归来降低时间复杂度
2.当遇到涉及n的问题时(类似青蛙跳台阶问题),不要紧张,可以进行归纳分析,特别注意f(n)与f(n-1)、f(n-2)等的关联,从而找出规律,进行合理建模。
3.return (int)Math.pow(2,target-1);
1) 转int类型
2)pow不是power
【Java】 剑指offer(9) 斐波那契数列及青蛙跳台阶问题的更多相关文章
- (1)剑指Offer之斐波那契数列问题和跳台阶问题
一 斐波那契数列 题目描述: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项. n<=39 问题分析: 可以肯定的是这一题通过递归的方式是肯定能做出来,但是这样会有 ...
- 《剑指offer》斐波那契数列
本题来自<剑指offer> 斐波那契数列 矩阵覆盖 题目一: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0).n<=39 思路: ...
- 剑指offer:斐波那契数列
目录 题目 解题思路 具体代码 题目 题目链接 剑指offer:斐波那契数列 题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n< ...
- 力扣 - 剑指 Offer 10- I. 斐波那契数列
题目 剑指 Offer 10- I. 斐波那契数列 思路1(递归 / 自顶向下) 这题是很常见的一道入门递归题,可以采用自顶向下的递归方法,比如我们要求第n个位置的值,根据斐波那契数列的定义fib(n ...
- Go语言实现:【剑指offer】斐波那契数列
该题目来源于牛客网<剑指offer>专题. 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0) n<=39 Go语言实现: 递归: ...
- 剑指offer三: 斐波拉契数列
斐波拉契数列是指这样一个数列: F(1)=1; F(2)=1; F(n)=F(n-1)+F(n); public class Solution { public int Fibonacci(int n ...
- 剑指offer 07斐波那契数列
现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0).n<=39 java版本: public class Solution { public static void m ...
- 剑指Offer 7. 斐波那契数列 (递归)
题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n<=39 题目地址 https://www.nowcoder.com/prac ...
- 《剑指offer》-斐波那契数列
大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项. n<=39 这么直接的问fibonacci,显然是迭代计算.递归的问题在于重复计算,而迭代则避免了这一点:递归是自 ...
随机推荐
- 《深入理解java虚拟机》第六章 类文件结构
第六章 类文件结构 6.2 无关性的基石 各种不同平台的虚拟机与所有的平台都统一使用的程序存储格式--字节码(ByteCode)是构成平台无关性的基石.java虚拟机不和包括java在内的任何语言 ...
- Java EE之Hibernate异常总结【5】java.lang.StackOverflowError[栈溢出]
Exception in thread "main" java.lang.StackOverflowError at java.lang.reflect.InvocationTar ...
- luogu P2662 牛场围栏
传送门 因为一个木板可以切掉最多\(m\),所以可以先预处理哪些长度的木板可用,开个桶,然后对\([l-m,l]\)打标记,再把打了标记的数取出来 假设可用长度\(a_1,a_2,,,a_n\)从小到 ...
- HTTP 协议报文解析
说明转载自https://blog.csdn.net/chf1142152101/article/details/74162755 本篇主要是为了记录HTTP中报文的格式,以便针对报文进行解析.首先会 ...
- Android ROM资源文件存放位置
位于目录:framework/core/res/res /frameworks/base/core/res/res/values/public.xml 上面的文件中公开了上层(也就是第三方应用或者系统 ...
- SpringBoot2.x使用Dev-tool热部署
SpringBoot2.x使用Dev-tool热部署 为什么使用热部署? 当修改某些文件内容如配置文件时,我们需要重新启动服务器,比较麻烦,需要一个工具来进行检测是否修改.热加载可以检测到修改的部分, ...
- 如何用MoveIt快速搭建机器人运动规划平台?
MoveIt = RobotGo,翻译成中文就是“机器人,走你!”所以,MoveIt的主要就是一款致力于让机器人能够自主运动及其相关技术的软件,它的所有模块都是围绕着运动规划的实现而设计的. 两个月前 ...
- 攻击者利用的Windows命令、横向渗透工具分析结果列表
横向渗透工具分析结果列表 https://jpcertcc.github.io/ToolAnalysisResultSheet/ 攻击者利用的Windows命令 https://blogs.jpcer ...
- Linux Makefile 编译速度的优化【转】
转自:https://blog.csdn.net/QQ1452008/article/details/51851801 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog. ...
- kset学习demo以及Oops反汇编objdump调试例子【原创】
写一个main.c gcc -c -g main.c objdump -S main.o > b.txt arm-none-linux-gnueabi-gcc -c -g a.c arm-non ...