题意:

有n个王子和m个公主,每个王子都会喜欢若干个公主,也就是王子只跟自己喜欢的公主结婚,公主就比较悲惨, 跟谁结婚都行。然后输出王子可能的结婚对象,必须保证王子与任意这些对象中的一个结婚,都不会影响到剩余的王子的配对数,也就是不能让剩余的王子中突然有一个人没婚可结了。

思路:

对每个没有匹配的公主,建一个虚拟的王子,让他们变成匹配,然后由这个虚拟王子向每个公主建边。对每个没有匹配的王子,建一个虚拟的公主,让他们变成匹配,然后每个王子向这个虚拟公主建边。求一个Tarjan,判断是否为1个强连通分量即可。

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#define maxn 2005 using namespace std; int dfn[maxn],low[maxn],vi[maxn],Stack[maxn],head[maxn],id[maxn],n,e,lab,num,top,ans[maxn];
int graphic[][],m,match[maxn],cho[maxn],mm; struct Edge{
int u,v,next;
}edge[]; vector<int> q[maxn],girl[maxn]; void init()
{
memset(dfn,,sizeof(dfn));
memset(low,,sizeof(low));
memset(vi,,sizeof(vi));
memset(head,-,sizeof(head));
memset(id,,sizeof(id));
memset(graphic,,sizeof(graphic));
memset(cho,,sizeof(cho));
memset(match,-,sizeof(match));
memset(ans,,sizeof(ans));
for(int i=;i<maxn;i++)
q[i].clear(),girl[i].clear();
e=lab=num=top=mm=;
} void add(int u,int v)
{
edge[e].u=u,edge[e].v=v,edge[e].next=head[u],head[u]=e++;
} int dfs(int u)//匈牙利算法
{
int i;
for(i=;i<=m;i++)
{
if(!vi[i]&&graphic[u][i])
{
vi[i]=;
if(match[i]==-||dfs(match[i]))
{
match[i]=u;
return ;
}
}
}
return ;
} int Tarjan(int u)
{
dfn[u]=low[u]=++lab;
vi[u]=;
Stack[top++]=u;
int i,v;
for(i=head[u];i!=-;i=edge[i].next)
{
v=edge[i].v;
if(!dfn[v])
{
Tarjan(v);
low[u]=min(low[u],low[v]);
}
if(vi[v])
low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
++num;
do{
i=Stack[--top];
vi[i]=;
id[i]=num;
}while(i!=u);
}
return ;
} void solve()
{
int i,j;
for(i=;i<=n+m+mm;i++)
if(!dfn[i])
Tarjan(i);
for(i=n+;i<=n+m;i++)
{
q[id[i]].push_back(i-n);
}
int cnt=;
for(i=;i<=n;i++)
{
int size=q[id[i]].size();
cnt=;
for(j=;j<size;j++)
{
if(graphic[i][q[id[i]][j]])
ans[cnt++]=q[id[i]][j];
}
printf("%d",cnt);
for(j=;j<cnt;j++)
printf(" %d",ans[j]);
printf("\n");
}
} int main()
{
int a,b,i,j,t,Case=;
scanf("%d",&t);
while(t--)
{
init();
scanf("%d%d",&n,&m);
for(i=;i<=n;i++)
{
scanf("%d",&a);
while(a--)
{
scanf("%d",&b);
add(i,b+n);
graphic[i][b]=;
}
}
int num=;
memset(match,-,sizeof(match));
for(i=;i<=n;i++)
{
memset(vi,,sizeof(vi));
if(dfs(i))
num++;
}
mm=;
for(i=;i<=m;i++)
{
if(match[i]==-)
{
mm++;
add(n+m+mm,i+n);
add(i+n,n+m+mm);
for(j=;j<=m;j++)
add(n+m+mm,j+n);
}
else
{
cho[match[i]]=;
}
add(i+n,match[i]);
}
for(i=;i<=n;i++)
{
if(cho[i]==)
{
mm++;
add(i,n+m+mm);
add(n+m+mm,i);
for(j=;j<=n;j++)
add(j,n+m+mm);
}
}
memset(vi,,sizeof(vi));
printf("Case #%d:\n",++Case);
solve();
}
return ;
}

HDU4685 Prince and Princess【强连通】的更多相关文章

  1. 强连通+二分匹配(hdu4685 Prince and Princess)

    Prince and Princess Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Othe ...

  2. HDU4685 Prince and Princess 完美搭配+良好的沟通

    意甲冠军:今天,有n王子,m公主.现在给他们配对,与王子会嫁给一个男人,他喜欢.公主无法做出选择. 这标题去咬硬,还有一类似的题目poj1904.那个题目也是给王子与公主配对,但那个是王子公主各n个, ...

  3. HDU4865 Prince and Princess 强连通分量+二分图判定

    这个题就是建图费点劲,别的和我上一篇博客一样 然后,参考思路请戳这里http://www.cnblogs.com/wally/archive/2013/09/12/3317883.html 补充:这个 ...

  4. Prince and Princess HDU - 4685(匹配 + 强连通)

    Prince and Princess Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Othe ...

  5. HDU 4685 Prince and Princess (2013多校8 1010题 二分匹配+强连通)

    Prince and Princess Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Othe ...

  6. HDU4685:Prince and Princess(二分图匹配+tarjan)

    Prince and Princess Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Othe ...

  7. 10635 - Prince and Princess

    Problem D Prince and Princess Input: Standard Input Output: Standard Output Time Limit: 3 Seconds In ...

  8. UVa10653.Prince and Princess

    题目连接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  9. uva 10635 - Prince and Princess(LCS)

    题目连接:10635 - Prince and Princess 题目大意:给出n, m, k,求两个长度分别为m + 1 和 k + 1且由1~n * n组成的序列的最长公共子序列长的. 解题思路: ...

随机推荐

  1. Delphi中统一显示表格字段名的高效方法

    问题描述:在开发数据库程序时,我们经常要使用很多的表格显示组件DBGrid.当DBGrid显示某表格的数据时,其字段标题默认的就是后台数据库中的表格的字段名称.而为了数据库开发方便,后台数据库中的表格 ...

  2. 关于JavaScript中this的软绑定

    首先,什么是软绑定? 所谓软绑定,是和硬绑定相对应的一个词,在详细解释软绑定之前,我们先来看看硬绑定.在JavaScript中,this的绑定是动态的,在函数被调用的时候绑定,它指向什么完全取决于函数 ...

  3. fatal error: matio.h: No such file or directory

    http://blog.csdn.net/zziahgf/article/details/72900948 $ sudo apt-get install libmatio-dev 或源码安装: # 下 ...

  4. httprequest存储的是字符内容 而文本内容是以字节形式上传的;所以普通的取值方式无法从httprequest取到值

    httprequest存储的是字符内容 而文本内容是以字节形式上传的;所以普通的取值方式无法从httprequest取到值

  5. BZOJ4998星球联盟——LCT+并查集(LCT动态维护边双连通分量)

    题目描述 在遥远的S星系中一共有N个星球,编号为1…N.其中的一些星球决定组成联盟,以方便相互间的交流.但是,组成 联盟的首要条件就是交通条件.初始时,在这N个星球间有M条太空隧道.每条太空隧道连接两 ...

  6. day11 匿名函数

    格式 lambda 形参 :逻辑运算方式 lambda x:x+1 普通的方式计算 卧槽.这么长! def calc(x): return x+1 res = calc(10) print(res) ...

  7. 【BZOJ1823】[JSOI2010]满汉全席(2-sat)

    [BZOJ1823][JSOI2010]满汉全席(2-sat) 题面 BZOJ 洛谷 题解 很明显的\(2-sat\)模板题,还不需要输出方案. 对于任意两组限制之间,检查有无同一种石材要用两种不同的 ...

  8. 洛谷 P2467 地精部落 解题报告

    P2467 [SDOI2010]地精部落 题目描述 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为\(N\)的山脉\(H\)可分为从左到右的\(N ...

  9. c语言可变参

    一.什么是可变参数 在C语言编程中有时会遇到一些参数个数可变的函数,例如printf(),scanf()函数,其函数原型为: int printf(const char* format,…),int ...

  10. C# 数组&集合&泛型集合

    一.数组 必须规定类型,必须规定长度:  1.定义 int[ ] i = new int[5]; int[] j = new int[]{1,2,3,4,5}; 2.数组的遍历: Console.Wr ...