HDU4685 Prince and Princess【强连通】
题意:
有n个王子和m个公主,每个王子都会喜欢若干个公主,也就是王子只跟自己喜欢的公主结婚,公主就比较悲惨, 跟谁结婚都行。然后输出王子可能的结婚对象,必须保证王子与任意这些对象中的一个结婚,都不会影响到剩余的王子的配对数,也就是不能让剩余的王子中突然有一个人没婚可结了。
思路:
对每个没有匹配的公主,建一个虚拟的王子,让他们变成匹配,然后由这个虚拟王子向每个公主建边。对每个没有匹配的王子,建一个虚拟的公主,让他们变成匹配,然后每个王子向这个虚拟公主建边。求一个Tarjan,判断是否为1个强连通分量即可。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#define maxn 2005 using namespace std; int dfn[maxn],low[maxn],vi[maxn],Stack[maxn],head[maxn],id[maxn],n,e,lab,num,top,ans[maxn];
int graphic[][],m,match[maxn],cho[maxn],mm; struct Edge{
int u,v,next;
}edge[]; vector<int> q[maxn],girl[maxn]; void init()
{
memset(dfn,,sizeof(dfn));
memset(low,,sizeof(low));
memset(vi,,sizeof(vi));
memset(head,-,sizeof(head));
memset(id,,sizeof(id));
memset(graphic,,sizeof(graphic));
memset(cho,,sizeof(cho));
memset(match,-,sizeof(match));
memset(ans,,sizeof(ans));
for(int i=;i<maxn;i++)
q[i].clear(),girl[i].clear();
e=lab=num=top=mm=;
} void add(int u,int v)
{
edge[e].u=u,edge[e].v=v,edge[e].next=head[u],head[u]=e++;
} int dfs(int u)//匈牙利算法
{
int i;
for(i=;i<=m;i++)
{
if(!vi[i]&&graphic[u][i])
{
vi[i]=;
if(match[i]==-||dfs(match[i]))
{
match[i]=u;
return ;
}
}
}
return ;
} int Tarjan(int u)
{
dfn[u]=low[u]=++lab;
vi[u]=;
Stack[top++]=u;
int i,v;
for(i=head[u];i!=-;i=edge[i].next)
{
v=edge[i].v;
if(!dfn[v])
{
Tarjan(v);
low[u]=min(low[u],low[v]);
}
if(vi[v])
low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
++num;
do{
i=Stack[--top];
vi[i]=;
id[i]=num;
}while(i!=u);
}
return ;
} void solve()
{
int i,j;
for(i=;i<=n+m+mm;i++)
if(!dfn[i])
Tarjan(i);
for(i=n+;i<=n+m;i++)
{
q[id[i]].push_back(i-n);
}
int cnt=;
for(i=;i<=n;i++)
{
int size=q[id[i]].size();
cnt=;
for(j=;j<size;j++)
{
if(graphic[i][q[id[i]][j]])
ans[cnt++]=q[id[i]][j];
}
printf("%d",cnt);
for(j=;j<cnt;j++)
printf(" %d",ans[j]);
printf("\n");
}
} int main()
{
int a,b,i,j,t,Case=;
scanf("%d",&t);
while(t--)
{
init();
scanf("%d%d",&n,&m);
for(i=;i<=n;i++)
{
scanf("%d",&a);
while(a--)
{
scanf("%d",&b);
add(i,b+n);
graphic[i][b]=;
}
}
int num=;
memset(match,-,sizeof(match));
for(i=;i<=n;i++)
{
memset(vi,,sizeof(vi));
if(dfs(i))
num++;
}
mm=;
for(i=;i<=m;i++)
{
if(match[i]==-)
{
mm++;
add(n+m+mm,i+n);
add(i+n,n+m+mm);
for(j=;j<=m;j++)
add(n+m+mm,j+n);
}
else
{
cho[match[i]]=;
}
add(i+n,match[i]);
}
for(i=;i<=n;i++)
{
if(cho[i]==)
{
mm++;
add(i,n+m+mm);
add(n+m+mm,i);
for(j=;j<=n;j++)
add(j,n+m+mm);
}
}
memset(vi,,sizeof(vi));
printf("Case #%d:\n",++Case);
solve();
}
return ;
}
HDU4685 Prince and Princess【强连通】的更多相关文章
- 强连通+二分匹配(hdu4685 Prince and Princess)
Prince and Princess Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Othe ...
- HDU4685 Prince and Princess 完美搭配+良好的沟通
意甲冠军:今天,有n王子,m公主.现在给他们配对,与王子会嫁给一个男人,他喜欢.公主无法做出选择. 这标题去咬硬,还有一类似的题目poj1904.那个题目也是给王子与公主配对,但那个是王子公主各n个, ...
- HDU4865 Prince and Princess 强连通分量+二分图判定
这个题就是建图费点劲,别的和我上一篇博客一样 然后,参考思路请戳这里http://www.cnblogs.com/wally/archive/2013/09/12/3317883.html 补充:这个 ...
- Prince and Princess HDU - 4685(匹配 + 强连通)
Prince and Princess Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Othe ...
- HDU 4685 Prince and Princess (2013多校8 1010题 二分匹配+强连通)
Prince and Princess Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Othe ...
- HDU4685:Prince and Princess(二分图匹配+tarjan)
Prince and Princess Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Othe ...
- 10635 - Prince and Princess
Problem D Prince and Princess Input: Standard Input Output: Standard Output Time Limit: 3 Seconds In ...
- UVa10653.Prince and Princess
题目连接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- uva 10635 - Prince and Princess(LCS)
题目连接:10635 - Prince and Princess 题目大意:给出n, m, k,求两个长度分别为m + 1 和 k + 1且由1~n * n组成的序列的最长公共子序列长的. 解题思路: ...
随机推荐
- codeforces365B
The Fibonacci Segment CodeForces - 365B You have array a1, a2, ..., an. Segment [l, r] (1 ≤ l ≤ r ≤ ...
- 51nod1268(基础dfs)
解题思路:直接搜索找就行了,搜两边,一个是加入这个数字,一边是不加入这个数字 代码: #include<iostream>#include<algorithm>#define ...
- 如何在Anaconda中实现多版本python共存
anaconda中Python版本是3.5,因为爬虫原因,需要Python2.7版本,因此,希望能在anaconda中Python3和Python2共存. 1. 打开Anaconda Prompt,可 ...
- 【刷题】LOJ 2863 「IOI2018」组合动作
题目描述 你在玩一个动作游戏.游戏控制器有 \(4\) 个按键,A.B.X 和 Y.在游戏中,你用组合动作来赚金币.你可以依次按这些按键来完成一个组合动作. 这个游戏有一个隐藏的按键序列,可以表示为由 ...
- 【转】 cJSON 源码解析
关于cjson的介绍和使用方法就不在这里介绍了,详情请查看上一篇博客cjson使用方法. JSON的内存结构像广义表,可以认为是有层次的双向链表. cJSON程序中的细节点如下: 大量宏替换 大量静态 ...
- 洛谷 P1076 寻宝 解题报告
P1076 寻宝 题目描述 传说很遥远的藏宝楼顶层藏着诱人的宝藏.小明历尽千辛万苦终于找到传说中的这个藏宝楼,藏宝楼的门口竖着一个木板,上面写有几个大字:寻宝说明书.说明书的内容如下: 藏宝楼共有\( ...
- Hadoop HDFS命令
hadoop fs -mkdir 创建HDFS目录 # hadoop fs -mkdir /data Hadoop fs -ls 列出HDFS目录 # hadoop fs -ls /data ha ...
- 利用NEST2.0 在C#中操作Elasticsearch
前言:本文主要演示了如何通过c#来操作elasticsearch,分两个方面来演示: 索引数据 搜索数据 Note: 注意我索引数据和搜索数据是两个不同的例子,没有前后依赖关系 准备工作:需要在vis ...
- 「loj3057」「hnoi2019」校园旅行
题目 一个n个点m条边的无向图,每个点有0 / 1 的标号; 有q个询问,每次询问(u,v)直接是否存在回文路径(可以经过重复的点和边); $1 \le n \le 5 \times 10^3 , ...
- 【loj3043】【zjoi2019】线段树
题目 描述 有\(m\)个操作一次发生,每个操作有\(\frac{1}{2}\)的概率被执行 ; 一次操作为线段树([1,n])上的 \(modify(Node,l,r,ql,qr)\) ; ...