luogu P2900 [USACO08MAR]土地征用Land Acquisition
写这道题时,预处理部分少打了等号,吓得我以为斜率优化错了或者被卡精了 mmp
首先有一个很明显的结论(逃),就是一个土地如果长(\(x\))与宽(\(y\))都比另一个土地小,那么这个土地一定可以跟那另一个一起买,所以这样被包含的土地不会贡献答案.我们只要把长作为第一关键字,宽作为第二关键字,从小到大排个序,然后被包含的土地去掉.这样就剩下一堆\(x\)递增,\(y\)递减的土地.
容易列出转移方程$$f_i=min(f_j+x_iy_{j+1})$$
然而数据范围有50000,n方过不去
发现这题可以用斜率优化,把$$f_j+x_iy_{j+1}<f_k+x_iy_{k+1}$$推一推得到$$x_i<\frac{f_k-f_j}{y_{j+1}-y_{k+1}}$$
然后,,,你懂的
#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register
#define db double
#define max(a,b) ((a)>(b)?(a):(b))
using namespace std;
const int N=50000+10;
il LL rd()
{
re LL x=0,w=1;re char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
struct nn
{
LL x,y;
}a[N],b[N];
bool ccmp(nn a,nn b){return a.x!=b.x?a.x<b.x:a.y<b.y;}
int n,m;
LL f[N];
db K(int i,int j){return (db)(f[j]-f[i])/(db)(b[i+1].y-b[j+1].y);}
int main()
{
n=rd();
for(re int i=1;i<=n;i++) a[i].x=rd(),a[i].y=rd();
sort(a+1,a+n+1,ccmp);
for(re int i=1;i<=n;i++)
{
while(m>0&&a[i].y>=b[m].y) --m;
b[++m]=a[i];
}
int q[N],hd=1,tl=1;q[1]=0;
for(re int i=1;i<=m;i++)
{
while(hd<tl&&K(q[hd],q[hd+1])<=b[i].x) ++hd;
f[i]=f[q[hd]]+b[i].x*b[q[hd]+1].y;
while(hd<tl&&K(q[tl],q[tl-1])>=K(i,q[tl-1])) --tl;
q[++tl]=i;
}
printf("%lld\n",f[m]);
return 0;
}
luogu P2900 [USACO08MAR]土地征用Land Acquisition的更多相关文章
- 洛谷 P2900 [USACO08MAR]土地征用Land Acquisition 解题报告
P2900 [USACO08MAR]土地征用Land Acquisition 题目描述 约翰准备扩大他的农场,眼前他正在考虑购买N块长方形的土地.如果约翰单买一块土 地,价格就是土地的面积.但他可以选 ...
- 洛谷P2900 [USACO08MAR]土地征用Land Acquisition(动态规划,斜率优化,决策单调性,线性规划,单调队列)
洛谷题目传送门 用两种不一样的思路立体地理解斜率优化,你值得拥有. 题意分析 既然所有的土地都要买,那么我们可以考虑到,如果一块土地的宽和高(其实是蒟蒻把长方形立在了平面上)都比另一块要小,那么肯定是 ...
- 洛谷P2900 [USACO08MAR]土地征用Land Acquisition(斜率优化)
题意 约翰准备扩大他的农场,眼前他正在考虑购买N块长方形的土地.如果约翰单买一块土 地,价格就是土地的面积.但他可以选择并购一组土地,并购的价格为这些土地中最大的长 乘以最大的宽.比如约翰并购一块3 ...
- P2900 [USACO08MAR]土地征用Land Acquisition
\(\color{#0066ff}{ 题目描述 }\) 约翰准备扩大他的农场,眼前他正在考虑购买N块长方形的土地.如果约翰单买一块土 地,价格就是土地的面积.但他可以选择并购一组土地,并购的价格为这些 ...
- Luogu 2900 [USACO08MAR]土地征用Land Acquisition
斜率优化dp. 首先发现如果存在$x$和$y$使得$len(x) \geq len(y)$并且$wid(x) \geq wid(y)$,那么$y$直接不考虑就好了,因为在买$x$的时候就把$y$顺便带 ...
- 【洛谷 P2900】 [USACO08MAR]土地征用Land Acquisition(斜率优化,单调栈)
题目链接 双倍经验 设\(H\)表示长,\(W\)表示宽. 若\(H_i<H_j\)且\(W_i<W_j\),显然\(i\)对答案没有贡献. 于是把所有点按\(H\)排序,然后依次加入一个 ...
- [LuoguP2900] [USACO08MAR]土地征用(Land Acquisition)
土地征用 (Link) 约翰准备扩大他的农场,眼前他正在考虑购买N块长方形的土地.如果约翰单买一块土 地,价格就是土地的面积.但他可以选择并购一组土地,并购的价格为这些土地中最大的长 乘以最大的宽.比 ...
- [USACO08MAR]土地征用Land Acquisition
题面在这里 题意 约翰准备扩大他的农场,眼前他正在考虑购买N块长方形的土地. 如果约翰单买一块土地,价格就是土地的面积,但他可以选择并购一组土地, 并购的价格为这些土地中最大的长乘以最大的宽. 给定每 ...
- 洛谷2900 [USACO08MAR]土地征用Land Acquisition (斜率优化+dp)
自闭的一批....为什么斜率优化能这么自闭. 首先看到这个题的第一想法一定是按照一个维度进行排序. 那我们不妨直接按照\(h_i\)排序. 我们令\(dp[i]\)表示到了第\(i\)个矩形的答案是多 ...
随机推荐
- ava 8中的新功能特性
正如我之前所写的,Java 8中的新功能特性改变了游戏规则.对Java开发者来说这是一个全新的世界,并且是时候去适应它了. 在这篇文章里,我们将会去了解传统循环的一些替代方案.在Java 8的新功能特 ...
- 【Mysql】—— 索引的分类
注意:索引是在存储引擎中实现的,也就是说不同的存储引擎,会使用不同的索引.MyISAM和InnoDB存储引擎:只支持BTREE索引,也就是说默认使用BTREE,不能够更换.MEMORY/HEAP存储引 ...
- 利用caffe自带的Makefile编译自定义so文件
1.文件目录结构 caffe-root |--include |--example |--modules |--test.h |--test.cpp |--python |--src |--tools ...
- 一本通1609【例 4】Cats Transport
1609:[例 4]Cats Transport 时间限制: 1000 ms 内存限制: 524288 KB sol:非常偷懒的截图了事 注意:只能猫等人,不能人等猫 对于每只猫,我们 ...
- BZOJ3075[USACO 2013 Mar Gold 3.Necklace]——AC自动机+DP
题目描述 给你一个长度为n的字符串A,再给你一个长度为m的字符串B,求至少在A中删去多少个字符才能使得B不是A的子串.注:该题只读入A和B,不读入长度,先读入A,再读入B.数据保证A和B中只含小写字母 ...
- PHP页面显示中文字符出现乱码
[出现问题] php页面显示中文字符出现乱码 [解决方法] 在php页面的代码前插入一行代码即可 header("Content-Type: text/html;charset=utf-8& ...
- Leapin' Lizards HDU - 2732 (恶心的建图。。)
这道题其实不难...就是建图恶心了点....emm... 题意: 多源多汇 + 拆边 青蛙跳柱子, 每根柱子都有一定的承载能力, 青蛙跳上去之后柱子的承载能力就会减一,跳到边界就能活 跳不到就over ...
- 【UOJ#275】组合数问题(卢卡斯定理,动态规划)
[UOJ#275]组合数问题(卢卡斯定理,动态规划) 题面 UOJ 题解 数据范围很大,并且涉及的是求值,没法用矩阵乘法考虑. 发现\(k\)的限制是,\(k\)是一个质数,那么在大组合数模小质数的情 ...
- [hgoi#2019/2/16t2]friend
题目描述 在一个遥远的国度里有n个人,每个人手上写着4个互不相同的数. 这个国度比较奇怪,如果两个人至少有一个数字相同,则他们是一对朋友. 现在这n个人按序号从左到右排成了一排,每个人都想知道在他左边 ...
- JavaScript的面向对象原理之原型链详解
一.引言 在16年的10月份,在校内双选会找前端实习的时候,hr问了一个问题:JavaScript的面向对象理解吗?我张口就说“JavaScript是基于原型的!”.然后就没什么好说的了,hr可能不知 ...