AutoML相关论文
本文为Awesome-AutoML-Papers的译文。
1、AutoML简介
Machine Learning几年来取得的不少可观的成绩,越来越多的学科都依赖于它。然而,这些成果都很大程度上取决于人类机器学习专家来完成如下工作:
- 数据预处理 Preprocess the data
- 选择合适的特征 Select appropriate features
- 选择合适的模型族 Select an appropriate model family
- 优化模型参数 Optimize model hyperparameters
- 模型后处理 Postprocess machine learning models
- 分析结果 Critically analyze the results obtained
随着大多数任务的复杂度都远超非机器学习专家的能力范畴,机器学习应用的不断增长使得人们对现成的机器学习方法有了极大的需求。因为这些现成的机器学习方法使用简单,并且不需要专业知识。我们将由此产生的研究领域称为机器学习的逐步自动化。
AutoML借鉴了机器学习的很多知识,主要包括:
- 贝叶斯优化 Bayesian optimization
- 结构化数据的大数据的回归模型 Regression models for structured data and big data
- 元学习 Meta learning
- 迁移学习 Transfer learning
- 组合优化 Combinatorial optimization.
2、目录
- Papers
- Tutorials
- Articles
- Slides
- Books
- Projects
- Prominent Researchers
Papers
Automated Feature Engineering
Expand Reduce
- 2017 | AutoLearn — Automated Feature Generation and Selection | Ambika Kaul, et al. | ICDM |
PDF - 2017 | One button machine for automating feature engineering in relational databases | Hoang Thanh Lam, et al. | arXiv |
PDF - 2016 | Automating Feature Engineering | Udayan Khurana, et al. | NIPS |
PDF - 2016 | ExploreKit: Automatic Feature Generation and Selection | Gilad Katz, et al. | ICDM |
PDF - 2015 | Deep Feature Synthesis: Towards Automating Data Science Endeavors | James Max Kanter, Kalyan Veeramachaneni | DSAA |
PDF
- 2017 | AutoLearn — Automated Feature Generation and Selection | Ambika Kaul, et al. | ICDM |
Hierarchical Organization of Transformations
- 2016 | Cognito: Automated Feature Engineering for Supervised Learning | Udayan Khurana, et al. | ICDMW |
PDF
- 2016 | Cognito: Automated Feature Engineering for Supervised Learning | Udayan Khurana, et al. | ICDMW |
Meta Learning
- 2017 | Learning Feature Engineering for Classification | Fatemeh Nargesian, et al. | IJCAI |
PDF
- 2017 | Learning Feature Engineering for Classification | Fatemeh Nargesian, et al. | IJCAI |
Reinforcement Learning
Evolutionary Algorithms
Local Search
- 2017 | Simple and Efficient Architecture Search for Convolutional Neural Networks | Thomoas Elsken, et al. | ICLR |
PDF
- 2017 | Simple and Efficient Architecture Search for Convolutional Neural Networks | Thomoas Elsken, et al. | ICLR |
Meta Learning
- 2016 | Learning to Optimize | Ke Li, Jitendra Malik | arXiv |
PDF
- 2016 | Learning to Optimize | Ke Li, Jitendra Malik | arXiv |
Reinforcement Learning
Transfer Learning
2017 | Learning Transferable Architectures for Scalable Image Recognition | Barret Zoph, et al. | arXiv |
PDFFrameworks
- 2017 | Google Vizier: A Service for Black-Box Optimization | Daniel Golovin, et al. | KDD |
PDF - 2017 | ATM: A Distributed, Collaborative, Scalable System for Automated Machine Learning | T. Swearingen, et al. | IEEE |
PDF 2015 | AutoCompete: A Framework for Machine Learning Competitions | Abhishek Thakur, et al. | ICML |
PDFHyperparameter Optimization
Bayesian Optimization
- 2016 | Bayesian Optimization with Robust Bayesian Neural Networks | Jost Tobias Springenberg, et al. | NIPS |
PDF - 2016 | Scalable Hyperparameter Optimization with Products of Gaussian Process Experts | Nicolas Schilling, et al. | PKDD |
PDF - 2016 | Taking the Human Out of the Loop: A Review of Bayesian Optimization | Bobak Shahriari, et al. | IEEE |
PDF - 2016 | Towards Automatically-Tuned Neural Networks | Hector Mendoza, et al. | JMLR |
PDF - 2016 | Two-Stage Transfer Surrogate Model for Automatic Hyperparameter Optimization | Martin Wistuba, et al. | PKDD |
PDF - 2015 | Efficient and Robust Automated Machine Learning |
PDF - 2015 | Hyperparameter Optimization with Factorized Multilayer Perceptrons | Nicolas Schilling, et al. | PKDD |
PDF - 2015 | Hyperparameter Search Space Pruning - A New Component for Sequential Model-Based Hyperparameter Optimization | Martin Wistua, et al. |
PDF - 2015 | Joint Model Choice and Hyperparameter Optimization with Factorized Multilayer Perceptrons | Nicolas Schilling, et al. | ICTAI |
PDF - 2015 | Learning Hyperparameter Optimization Initializations | Martin Wistuba, et al. | DSAA |
PDF - 2015 | Scalable Bayesian optimization using deep neural networks | Jasper Snoek, et al. | ACM |
PDF - 2015 | Sequential Model-free Hyperparameter Tuning | Martin Wistuba, et al. | ICDM |
PDF - 2013 | Auto-WEKA: Combined Selection and Hyperparameter Optimization of Classification Algorithms |
PDF - 2013 | Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures | J. Bergstra | JMLR |
PDF - 2012 | Practical Bayesian Optimization of Machine Learning Algorithms |
PDF - 2011 | Sequential Model-Based Optimization for General Algorithm Configuration(extended version) |
PDF
- 2016 | Bayesian Optimization with Robust Bayesian Neural Networks | Jost Tobias Springenberg, et al. | NIPS |
Evolutionary Algorithms
Lipschitz Functions
- 2017 | Global Optimization of Lipschitz functions | C´edric Malherbe, Nicolas Vayatis | arXiv |
PDF
- 2017 | Global Optimization of Lipschitz functions | C´edric Malherbe, Nicolas Vayatis | arXiv |
Local Search
- 2009 | ParamILS: An Automatic Algorithm Configuration Framework | Frank Hutter, et al. | JAIR |
PDF
- 2009 | ParamILS: An Automatic Algorithm Configuration Framework | Frank Hutter, et al. | JAIR |
Meta Learning
- 2008 | Cross-Disciplinary Perspectives on Meta-Learning for Algorithm Selection |
PDF
- 2008 | Cross-Disciplinary Perspectives on Meta-Learning for Algorithm Selection |
Particle Swarm Optimization
- 2017 | Particle Swarm Optimization for Hyper-parameter Selection in Deep Neural Networks | Pablo Ribalta Lorenzo, et al. | GECCO |
PDF - 2008 | Particle Swarm Optimization for Parameter Determination and Feature Selection of Support Vector Machines | Shih-Wei Lin, et al. | Expert Systems with Applications |
PDF
- 2017 | Particle Swarm Optimization for Hyper-parameter Selection in Deep Neural Networks | Pablo Ribalta Lorenzo, et al. | GECCO |
Random Search
Transfer Learning
- 2016 | Efficient Transfer Learning Method for Automatic Hyperparameter Tuning | Dani Yogatama, Gideon Mann | JMLR |
PDF - 2016 | Flexible Transfer Learning Framework for Bayesian Optimisation | Tinu Theckel Joy, et al. | PAKDD |
PDF - 2016 | Hyperparameter Optimization Machines | Martin Wistuba, et al. | DSAA |
PDF 2013 | Collaborative Hyperparameter Tuning | R´emi Bardenet, et al. | ICML |
PDFMiscellaneous
- 2016 | Efficient Transfer Learning Method for Automatic Hyperparameter Tuning | Dani Yogatama, Gideon Mann | JMLR |
- 2018 | Accelerating Neural Architecture Search using Performance Prediction | Bowen Baker, et al. | ICLR |
PDF 2017 | Automatic Frankensteining: Creating Complex Ensembles Autonomously | Martin Wistuba, et al. | SIAM |
PDF
Tutorials
Bayesian Optimization
2010 | A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning |
PDFMeta Learning
2008 | Metalearning - A Tutorial |
PDF
Articles
Bayesian Optimization
2016 | Bayesian Optimization for Hyperparameter Tuning |
LinkMeta Learning
- 2017 | Why Meta-learning is Crucial for Further Advances of Artificial Intelligence? |
Link 2017 | Learning to learn |
Link
Slides
Automated Feature Engineering
Automated Feature Engineering for Predictive Modeling | Udyan Khurana, etc al. |
PDFHyperparameter Optimization
Bayesian Optimization
- Bayesian Optimisation |
PDF A Tutorial on Bayesian Optimization for Machine Learning |
PDF
Books
Meta Learning
- 2009 | Metalearning - Applications to Data Mining | Springer |
PDF
Projects
- Advisor |
Python|Open Source|Code - auto-sklearn |
Python|Open Source|Code - Auto-WEKA |
Java|Open Source|Code - Hyperopt |
Python|Open Source|Code - Hyperopt-sklearn |
Python|Open Source|Code - SigOpt |
Python|Commercial|Link - SMAC3 |
Python|Open Source|Code - RoBO |
Python|Open Source|Code - BayesianOptimization |
Python|Open Source|Code - Scikit-Optimize |
Python|Open Source|Code - HyperBand |
Python|Open Source|Code - BayesOpt |
C++|Open Source|Code - Optunity |
Python|Open Source|Code - TPOT |
Python|Open Source|Code - ATM |
Python|Open Source|Code - Cloud AutoML |
Python|Commercial|Link - H2O |
Python|Commercial|Link - DataRobot |
Python|Commercial|Link - MLJAR |
Python|Commercial|Link - MateLabs |
Python|Commercial|Link
AutoML相关论文的更多相关文章
- 【转载】 AutoML相关论文
原文地址: https://www.cnblogs.com/marsggbo/p/9308518.html ---------------------------------------------- ...
- Kintinuous 相关论文 Volume Fusion 详解
近几个月研读了不少RGBD-SLAM的相关论文,Whelan的Volume Fusion系列文章的效果确实不错,而且开源代码Kintinuous结构清晰,易于编译和运行,故把一些学习时自己的理解和经验 ...
- sketch 相关论文
sketch 相关论文 Sketch Simplification We present a novel technique to simplify sketch drawings based on ...
- Neural ODE相关论文摘要翻译
*****仅供个人学习记录***** Neural Ordinary Differential Equations[2019] 论文地址:[1806.07366] Neural Ordinary Di ...
- ACL2016信息抽取与知识图谱相关论文掠影
实体关系推理与知识图谱补全 Unsupervised Person Slot Filling based on Graph Mining 作者:Dian Yu, Heng Ji 机构:Computer ...
- SDN网络虚拟化、资源映射等相关论文粗读
1. Control Plane Latency with SDN Network Hypervisors: The Cost of Virtualization 年份:2016 来源:IEEE NE ...
- 带状态论文粗读(三)[引用openstate的相关论文阅读]
一 文章名称:FLOWGUARD: Building Robust Firewalls for Software-Defined Networks 发表时间:2014 期刊来源:--- 解决问题: 一 ...
- 2017年研究生数学建模D题(前景目标检测)相关论文与实验结果
一直都想参加下数学建模,通过几个月培训学到一些好的数学思想和方法,今年终于有时间有机会有队友一起参加了研究生数模,but,为啥今年说不培训直接参加国赛,泪目~_~~,然后比赛前也基本没看,直接硬刚.比 ...
- MR 图像分割 相关论文摘要整理
<多分辨率水平集算法的乳腺MR图像分割> 针对乳腺 MR 图像信息量大.灰度不均匀.边界模糊.难分割的特点, 提出一种多分辨率水平集乳腺 MR图像分割算法. 算法的核心是首先利用小波多尺度 ...
随机推荐
- Hibernate表关系03
一. 一对多映射 1.基本应用 1.1 准备项目 创建项目:hibernate-02-relation 引入jar,同前一个项目 复制实体(客户).映射.配置.工具类 1.2 创建订单表 表名: t_ ...
- 一个开启多个事务导致OptimisticLockException异常的问题
异常信息:org.eclipse.persistence.exceptions.OptimisticLockException 对象在其他的事物中被修改,而造成这一个问题的原因是:同时开启了两个事务, ...
- python3网络爬虫(4):python3安装Scrapy
运行平台: Windows python版本: python3.5.2 IDE: pycharm 一.Scrapy简介 Scrapy是一个为了爬取网站数据提取结构性数据而编写的应用框架,可以应用于数 ...
- 【转载】LCT
原标题:LCT(Link-Cut Tree)详解(蒟蒻自留地) 出处:https://blog.csdn.net/saramanda/article/details/55253627 如果你还没有接触 ...
- 自学Linux Shell11.1-shell概述
点击返回 自学Linux命令行与Shell脚本之路 11.1-shell概述 Shell 是一个用 C 语言编写的程序,它是用户使用 Linux 的桥梁.Shell 既是一种命令语言,又是一种程序设计 ...
- 端午漫谈(附:Ubuntu18.04下轻量截图软件)
先说声端午快乐- 有空就陪陪家人吧.今天陪外公吃了顿饭,陪老人家聊了会天,颇有点感触.发现技术真的是改变生活,小孩抖音自学跳舞,大人微信刷又刷,很多天海一方的老朋友都可以联系到了... 其实最有感触的 ...
- Windows 10 MBR转GPT
Windows 10的创意者更新中,新增了mbr2gpt命令行工具,只需简单几步快速搞定分区表的转换 语法 MBR2GPT /validate|convert [/disk:] [/logs:] [/ ...
- idea中gitlab新创建分支查找不到的原因
问题: 很多人说是这样解决: https://blog.csdn.net/rodulf/article/details/51536532 然后对于我来说没用............ 这里先说下如何从m ...
- Simple Question
一.你会在时间序列数据集上使用什么交叉验证技术?是用k倍? 答:都不是.对于时间序列问题,k倍可能会很麻烦,因为第4年或第5年的一些模式有可能跟第3年的不同,而我们最终可能只是需要对过去几年的进行验证 ...
- sudo权限管理
sudo权限管理 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 好久没有更新关于命令的博客了,这也是这周工作,开发问了我一个问题,说caiq这个用户为什么不能用sudo权限,于是百 ...