AutoML相关论文
本文为Awesome-AutoML-Papers的译文。
1、AutoML简介
Machine Learning几年来取得的不少可观的成绩,越来越多的学科都依赖于它。然而,这些成果都很大程度上取决于人类机器学习专家来完成如下工作:
- 数据预处理 Preprocess the data
- 选择合适的特征 Select appropriate features
- 选择合适的模型族 Select an appropriate model family
- 优化模型参数 Optimize model hyperparameters
- 模型后处理 Postprocess machine learning models
- 分析结果 Critically analyze the results obtained
随着大多数任务的复杂度都远超非机器学习专家的能力范畴,机器学习应用的不断增长使得人们对现成的机器学习方法有了极大的需求。因为这些现成的机器学习方法使用简单,并且不需要专业知识。我们将由此产生的研究领域称为机器学习的逐步自动化。
AutoML借鉴了机器学习的很多知识,主要包括:
- 贝叶斯优化 Bayesian optimization
- 结构化数据的大数据的回归模型 Regression models for structured data and big data
- 元学习 Meta learning
- 迁移学习 Transfer learning
- 组合优化 Combinatorial optimization.
2、目录
- Papers
- Tutorials
- Articles
- Slides
- Books
- Projects
- Prominent Researchers
Papers
Automated Feature Engineering
Expand Reduce
- 2017 | AutoLearn — Automated Feature Generation and Selection | Ambika Kaul, et al. | ICDM |
PDF - 2017 | One button machine for automating feature engineering in relational databases | Hoang Thanh Lam, et al. | arXiv |
PDF - 2016 | Automating Feature Engineering | Udayan Khurana, et al. | NIPS |
PDF - 2016 | ExploreKit: Automatic Feature Generation and Selection | Gilad Katz, et al. | ICDM |
PDF - 2015 | Deep Feature Synthesis: Towards Automating Data Science Endeavors | James Max Kanter, Kalyan Veeramachaneni | DSAA |
PDF
- 2017 | AutoLearn — Automated Feature Generation and Selection | Ambika Kaul, et al. | ICDM |
Hierarchical Organization of Transformations
- 2016 | Cognito: Automated Feature Engineering for Supervised Learning | Udayan Khurana, et al. | ICDMW |
PDF
- 2016 | Cognito: Automated Feature Engineering for Supervised Learning | Udayan Khurana, et al. | ICDMW |
Meta Learning
- 2017 | Learning Feature Engineering for Classification | Fatemeh Nargesian, et al. | IJCAI |
PDF
- 2017 | Learning Feature Engineering for Classification | Fatemeh Nargesian, et al. | IJCAI |
Reinforcement Learning
Evolutionary Algorithms
Local Search
- 2017 | Simple and Efficient Architecture Search for Convolutional Neural Networks | Thomoas Elsken, et al. | ICLR |
PDF
- 2017 | Simple and Efficient Architecture Search for Convolutional Neural Networks | Thomoas Elsken, et al. | ICLR |
Meta Learning
- 2016 | Learning to Optimize | Ke Li, Jitendra Malik | arXiv |
PDF
- 2016 | Learning to Optimize | Ke Li, Jitendra Malik | arXiv |
Reinforcement Learning
Transfer Learning
2017 | Learning Transferable Architectures for Scalable Image Recognition | Barret Zoph, et al. | arXiv |
PDFFrameworks
- 2017 | Google Vizier: A Service for Black-Box Optimization | Daniel Golovin, et al. | KDD |
PDF - 2017 | ATM: A Distributed, Collaborative, Scalable System for Automated Machine Learning | T. Swearingen, et al. | IEEE |
PDF 2015 | AutoCompete: A Framework for Machine Learning Competitions | Abhishek Thakur, et al. | ICML |
PDFHyperparameter Optimization
Bayesian Optimization
- 2016 | Bayesian Optimization with Robust Bayesian Neural Networks | Jost Tobias Springenberg, et al. | NIPS |
PDF - 2016 | Scalable Hyperparameter Optimization with Products of Gaussian Process Experts | Nicolas Schilling, et al. | PKDD |
PDF - 2016 | Taking the Human Out of the Loop: A Review of Bayesian Optimization | Bobak Shahriari, et al. | IEEE |
PDF - 2016 | Towards Automatically-Tuned Neural Networks | Hector Mendoza, et al. | JMLR |
PDF - 2016 | Two-Stage Transfer Surrogate Model for Automatic Hyperparameter Optimization | Martin Wistuba, et al. | PKDD |
PDF - 2015 | Efficient and Robust Automated Machine Learning |
PDF - 2015 | Hyperparameter Optimization with Factorized Multilayer Perceptrons | Nicolas Schilling, et al. | PKDD |
PDF - 2015 | Hyperparameter Search Space Pruning - A New Component for Sequential Model-Based Hyperparameter Optimization | Martin Wistua, et al. |
PDF - 2015 | Joint Model Choice and Hyperparameter Optimization with Factorized Multilayer Perceptrons | Nicolas Schilling, et al. | ICTAI |
PDF - 2015 | Learning Hyperparameter Optimization Initializations | Martin Wistuba, et al. | DSAA |
PDF - 2015 | Scalable Bayesian optimization using deep neural networks | Jasper Snoek, et al. | ACM |
PDF - 2015 | Sequential Model-free Hyperparameter Tuning | Martin Wistuba, et al. | ICDM |
PDF - 2013 | Auto-WEKA: Combined Selection and Hyperparameter Optimization of Classification Algorithms |
PDF - 2013 | Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures | J. Bergstra | JMLR |
PDF - 2012 | Practical Bayesian Optimization of Machine Learning Algorithms |
PDF - 2011 | Sequential Model-Based Optimization for General Algorithm Configuration(extended version) |
PDF
- 2016 | Bayesian Optimization with Robust Bayesian Neural Networks | Jost Tobias Springenberg, et al. | NIPS |
Evolutionary Algorithms
Lipschitz Functions
- 2017 | Global Optimization of Lipschitz functions | C´edric Malherbe, Nicolas Vayatis | arXiv |
PDF
- 2017 | Global Optimization of Lipschitz functions | C´edric Malherbe, Nicolas Vayatis | arXiv |
Local Search
- 2009 | ParamILS: An Automatic Algorithm Configuration Framework | Frank Hutter, et al. | JAIR |
PDF
- 2009 | ParamILS: An Automatic Algorithm Configuration Framework | Frank Hutter, et al. | JAIR |
Meta Learning
- 2008 | Cross-Disciplinary Perspectives on Meta-Learning for Algorithm Selection |
PDF
- 2008 | Cross-Disciplinary Perspectives on Meta-Learning for Algorithm Selection |
Particle Swarm Optimization
- 2017 | Particle Swarm Optimization for Hyper-parameter Selection in Deep Neural Networks | Pablo Ribalta Lorenzo, et al. | GECCO |
PDF - 2008 | Particle Swarm Optimization for Parameter Determination and Feature Selection of Support Vector Machines | Shih-Wei Lin, et al. | Expert Systems with Applications |
PDF
- 2017 | Particle Swarm Optimization for Hyper-parameter Selection in Deep Neural Networks | Pablo Ribalta Lorenzo, et al. | GECCO |
Random Search
Transfer Learning
- 2016 | Efficient Transfer Learning Method for Automatic Hyperparameter Tuning | Dani Yogatama, Gideon Mann | JMLR |
PDF - 2016 | Flexible Transfer Learning Framework for Bayesian Optimisation | Tinu Theckel Joy, et al. | PAKDD |
PDF - 2016 | Hyperparameter Optimization Machines | Martin Wistuba, et al. | DSAA |
PDF 2013 | Collaborative Hyperparameter Tuning | R´emi Bardenet, et al. | ICML |
PDFMiscellaneous
- 2016 | Efficient Transfer Learning Method for Automatic Hyperparameter Tuning | Dani Yogatama, Gideon Mann | JMLR |
- 2018 | Accelerating Neural Architecture Search using Performance Prediction | Bowen Baker, et al. | ICLR |
PDF 2017 | Automatic Frankensteining: Creating Complex Ensembles Autonomously | Martin Wistuba, et al. | SIAM |
PDF
Tutorials
Bayesian Optimization
2010 | A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning |
PDFMeta Learning
2008 | Metalearning - A Tutorial |
PDF
Articles
Bayesian Optimization
2016 | Bayesian Optimization for Hyperparameter Tuning |
LinkMeta Learning
- 2017 | Why Meta-learning is Crucial for Further Advances of Artificial Intelligence? |
Link 2017 | Learning to learn |
Link
Slides
Automated Feature Engineering
Automated Feature Engineering for Predictive Modeling | Udyan Khurana, etc al. |
PDFHyperparameter Optimization
Bayesian Optimization
- Bayesian Optimisation |
PDF A Tutorial on Bayesian Optimization for Machine Learning |
PDF
Books
Meta Learning
- 2009 | Metalearning - Applications to Data Mining | Springer |
PDF
Projects
- Advisor |
Python|Open Source|Code - auto-sklearn |
Python|Open Source|Code - Auto-WEKA |
Java|Open Source|Code - Hyperopt |
Python|Open Source|Code - Hyperopt-sklearn |
Python|Open Source|Code - SigOpt |
Python|Commercial|Link - SMAC3 |
Python|Open Source|Code - RoBO |
Python|Open Source|Code - BayesianOptimization |
Python|Open Source|Code - Scikit-Optimize |
Python|Open Source|Code - HyperBand |
Python|Open Source|Code - BayesOpt |
C++|Open Source|Code - Optunity |
Python|Open Source|Code - TPOT |
Python|Open Source|Code - ATM |
Python|Open Source|Code - Cloud AutoML |
Python|Commercial|Link - H2O |
Python|Commercial|Link - DataRobot |
Python|Commercial|Link - MLJAR |
Python|Commercial|Link - MateLabs |
Python|Commercial|Link
AutoML相关论文的更多相关文章
- 【转载】 AutoML相关论文
原文地址: https://www.cnblogs.com/marsggbo/p/9308518.html ---------------------------------------------- ...
- Kintinuous 相关论文 Volume Fusion 详解
近几个月研读了不少RGBD-SLAM的相关论文,Whelan的Volume Fusion系列文章的效果确实不错,而且开源代码Kintinuous结构清晰,易于编译和运行,故把一些学习时自己的理解和经验 ...
- sketch 相关论文
sketch 相关论文 Sketch Simplification We present a novel technique to simplify sketch drawings based on ...
- Neural ODE相关论文摘要翻译
*****仅供个人学习记录***** Neural Ordinary Differential Equations[2019] 论文地址:[1806.07366] Neural Ordinary Di ...
- ACL2016信息抽取与知识图谱相关论文掠影
实体关系推理与知识图谱补全 Unsupervised Person Slot Filling based on Graph Mining 作者:Dian Yu, Heng Ji 机构:Computer ...
- SDN网络虚拟化、资源映射等相关论文粗读
1. Control Plane Latency with SDN Network Hypervisors: The Cost of Virtualization 年份:2016 来源:IEEE NE ...
- 带状态论文粗读(三)[引用openstate的相关论文阅读]
一 文章名称:FLOWGUARD: Building Robust Firewalls for Software-Defined Networks 发表时间:2014 期刊来源:--- 解决问题: 一 ...
- 2017年研究生数学建模D题(前景目标检测)相关论文与实验结果
一直都想参加下数学建模,通过几个月培训学到一些好的数学思想和方法,今年终于有时间有机会有队友一起参加了研究生数模,but,为啥今年说不培训直接参加国赛,泪目~_~~,然后比赛前也基本没看,直接硬刚.比 ...
- MR 图像分割 相关论文摘要整理
<多分辨率水平集算法的乳腺MR图像分割> 针对乳腺 MR 图像信息量大.灰度不均匀.边界模糊.难分割的特点, 提出一种多分辨率水平集乳腺 MR图像分割算法. 算法的核心是首先利用小波多尺度 ...
随机推荐
- BZOJ2793[Poi2012]Vouchers——枚举
题目描述 考虑正整数集合,现在有n组人依次来取数,假设第i组来了x人,他们每个取的数一定是x的倍数,并且是还剩下的最小的x个.正整数中有m个数被标成了幸运数,问有哪些人取到了幸运数. 输入 第一行一个 ...
- luogu4185 [USACO18JAN]MooTube (并查集)
类似于NOI2018d1t1的离线做法,把询问存下来,排个序,然后倒着给并查集加边,每次询问并查集联通块大小 #include<bits/stdc++.h> #define ll long ...
- [HAOI2015]按位或(min-max容斥,FWT,FMT)
题目链接:洛谷 题目大意:给定正整数 $n$.一开始有一个数字 $0$,然后每一秒,都有 $p_i$ 的概率获得 $i$ 这个数 $(0\le i< 2^n)$.一秒恰好会获得一个数.每获得一个 ...
- [HEOI2013]SAO ——计数问题
题目大意: Welcome to SAO ( Strange and Abnormal Online).这是一个 VR MMORPG, 含有 n 个关卡.但是,挑战不同关卡的顺序是一个很大的问题. 有 ...
- Java:返回当前内存信息
今天有个小程序想获得当前系统可用的内存信息,到百度搜索了一下,看到很多人都在说要采用JNI来做,JAVA本身没办法实现,经过半个多小时的搜索,终于找到了,原来Java本身已经有这个功能了.唉,看来是很 ...
- c++11并发之std::thread
知识链接: https://www.cnblogs.com/lidabo/p/7852033.html 构造函数如下: ) thread() noexcept; initialization() te ...
- linux提取指定列字符并打印所有内容(awk)
假设有文件长如下样子: CHROM POS ID REF ALT QUAL FILTER INFO FORMAT samplename 1 3552 ...
- Eclipse集成Gradle 【Eclipse在线安装Gradle插件方法】
本章将介绍了Eclipse集成Gradle.以下是将Gradle插件添加到Eclipse的步骤. 步骤1 - 打开Eclipse Marketplace 打开在系统中安装好的Eclipse. 转到 J ...
- eclipse复制工作空间配置
eclipse复制工作空间配置 eclipse复制工作空间配置 总结一下,复制工作空间配置步骤如下: 1 使用eclipse新建workspace. 2 将新建的workspace下的.metad ...
- 基于tcp和多线程的多人聊天室-C语言
之前在学习关于网络tcp和多线程的编程,学了知识以后不用一下总绝对心虚,于是就编写了一个基于tcp和多线程的多人聊天室. 具体的实现过程: 服务器端:绑定socket对象->设置监听数-> ...