bsgs问题 或 poj2417:

给定质数\(p\),给定\(a\),\(b\),\((a,p)=1\)

求出最小的整数x,使得\(a^{x}≡b(mod p)\)

概述

由费马小定理可以知道

\(a^{x+p-1}≡a^{x}≡b(mod p)\)

所以如果有解那\([0,p-1]\)区间内一定会出现解

让\(m=sqrt(p)\)

\(x\)可以表示为\(m*i-j\)

那\(m,i,j\)都是在根号规模的

\(a^{m*i-j}≡b(mod p)\)

\(\frac{a^{m*i}}{a^{j}}≡b(mod p)\)

\(a^{m*i}≡b*a^{j}(mod p)\)

右边\(hash\)表(一般都用stl的map)存在所有的j取值

左边暴力枚举i(因为是-j,所以从1枚举,要不然就成负数了,找出来的就不一定是最小解)

如果\(a^{m*i}\)在hash表中存在,那就有解,也是最小解,结束吧

如果根号范围内还没有解,那就真的没解

算法思想:分块

算法缺陷:p是质数

算法复杂度\(\sqrt{n}\)

\(map\)常数也许很高

代码

#include <iostream>
#include <cmath>
#include <map>
#include <cstdio>
#define ll long long
using namespace std;
ll a,b,p;
map<ll,ll> hasH;
int main() {
while(scanf("%lld%lld%lld",&p,&a,&b)!=EOF) {
ll m=floor(sqrt(p));
hasH.clear();
ll tmp=1;
hasH[b]=1;
for(ll i=1;i<=m;++i) tmp=tmp*a%p,hasH[tmp*b%p]=i+1;
ll xx=tmp,i=1,ans=-1;
for(;i<=m;++i) {
if(hasH[xx]) {ans=m*i%p-(hasH[xx]-1);break;}
xx=xx*tmp%p;
}
if(ans==-1) puts("no solution");
else printf("%d\n",ans);
}
return 0;
}

exbsgs

咕咕咕咕

鸣谢 \(gzy gzy gzy\)

bsgs整理的更多相关文章

  1. BZOJ 题目整理

    bzoj 500题纪念 总结一发题目吧,挑几道题整理一下,(方便拖板子) 1039:每条线段与前一条线段之间的长度的比例和夹角不会因平移.旋转.放缩而改变,所以将每条轨迹改为比例和夹角的序列,复制一份 ...

  2. [OI]省选前模板整理

    省选前把板子整理一遍,如果发现有脑抽写错的情况,欢迎各位神犇打脸 :) 数学知识 数论: //组合数 //C(n,m) 在n个数中选m个的方案数 ll C[N][N]; void get_C(int ...

  3. 数论入门2——gcd,lcm,exGCD,欧拉定理,乘法逆元,(ex)CRT,(ex)BSGS,(ex)Lucas,原根,Miller-Rabin,Pollard-Rho

    数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p ...

  4. OI题目类型总结整理

    ## 本蒟蒻的小整理qwq--持续更新(咕咕咕) 数据结构 数据结构 知识点梳理 数据结构--线段树 推荐yyb dalao的总结--戳我 以后维护线段树还是把l,r写到struct里面吧,也别写le ...

  5. 数学:拓展BSGS

    当C不是素数的时候,之前介绍的BSGS就行不通了,需要用到拓展BSGS算法 方法转自https://blog.csdn.net/zzkksunboy/article/details/73162229 ...

  6. [BSGS]大步小步算法

    问题 BSGS被用于求解离散对数,即同余方程: \[ A^x\equiv B\pmod{P} \] 求\(x\)的最小非负整数解. 保证\(A\perp P\)(互质). 分析 首先,我们根据费马小定 ...

  7. cyyz : Day 1 数论整理

    声明:感谢修改这篇博客的dsr Day 1 先说一下上午的听课吧,哎~,简直了,简直(⊙o⊙)…咋说呢,引人入胜???No! 是昏昏欲睡好吧...一点听课欲都没有(强撑....),一上午停下来简直怀疑 ...

  8. 【学习笔记】OI模板整理

    CSP2019前夕整理一下模板,顺便供之后使用 0. 非算法内容 0.1. 读入优化 描述: 使用getchar()实现的读入优化. 代码: inline int read() { int x=0; ...

  9. ACM算法模板整理

    史诗级ACM模板整理 基本语法 字符串函数 istream& getline (char* s, streamsize n ); istream& getline (char* s, ...

随机推荐

  1. ASP.NET MVC4中加入Log4Net日志记录功能

    前言 在之前的.NET中,微软还没有提供过像样的日志框架,目前能用的一些框架比如Log4Net.NLog.CommonLogging等,虽然多多少少使用起来有点费劲,但这里还是简单分享一下Log4Ne ...

  2. Unity shader学习之阴影

    Unity阴影采用的是 shadow map 的技术,即把摄像机放到光源位置上,看不到的地方就有阴影. 前向渲染中,若一光源开启了阴影,Unity会计算它的阴影映射纹理(shadow map),它其实 ...

  3. JavaScript循环和数组常用操作

    while循环 语法: do while循环 语法:do{循环体}while(条件表达式); 特点:do while循环不管条件是否成立,无论如何循环体都会执行一次. 使用场合:用户输入密码,如果密码 ...

  4. java 泛型E T ?的区别

    Java泛型中的标记符含义:  E - Element (在集合中使用,因为集合中存放的是元素) T - Type(Java 类) K - Key(键) V - Value(值) N - Number ...

  5. Maven依赖中的scope详解,在eclipse里面用maven install可以编程成功,到服务器上用命令执行报VM crash错误

    Maven依赖中的scope详解 项目中用了<scope>test</scope>在eclipse里面用maven install可以编译成功,到服务器上用命令执行报VM cr ...

  6. Codeforces 937A - Olympiad

    A. Olympiad 题目链接:http://codeforces.com/problemset/problem/937/A time limit per test 1 second memory ...

  7. linux系统电视盒子到底是什么

    经常看到各种大神说今天刷了什么linux系统可以干嘛干嘛了,刷了乌班图可以干嘛干嘛了,但是身为一个小白,对这种名词都是一知半解.所以这边给大家科普一下,什么是linux系统?电视盒子刷了这个可以干啥? ...

  8. flask框架----设置配置文件的几种方式

    设置配置文件的几种方式 ==========方式一:============ app.config['SESSION_COOKIE_NAME'] = 'session_lvning' #这种方式要把所 ...

  9. flask框架----flask入门

    一.Flask介绍(轻量级的框架,非常快速的就能把程序搭建起来) Flask是一个基于Python开发并且依赖jinja2模板和Werkzeug WSGI服务的一个微型框架,对于Werkzeug本质是 ...

  10. socket聊天的业务逻辑

        一.主要思想:     1.如果用户A想要发消息给用户B,A需要将消息发送到一个服务器上,服务器接收到A发送的消息之后,再把消息发送给B,B接收到消息     2.当用户B断开连接时服务器不会 ...