pyhanlp 两种依存句法分类器
依存句法分析器
在HanLP中一共有两种句法分析器
·依存句法分析
(1)基于神经网络的高性能依存句法分析器
(2)MaxEnt依存句法分析
基于神经网络的高性能依存句法分析器
HanLP中的基于神经网络的高性能依存句法分析器参考的是14年Chen&Manning的论文(A Fast and Accurate Dependency Parser using Neural Networks),这里还有一个发在了Github的实现程序,其实现语言为Python。除此之外,你还可以参考ljj123zz 的CSDN 一篇博客:blog.csdn.net/ljj123zz/article/details/78834838
HanLP作者的原文介绍已经写得比较清楚,唯一要注意的是原文章中介绍的依存句法分析器为早期版本,输出的依存关系为英文,现在应该变为中文,而且从测试结果看,训练语料应该已经更新了,但是更新为了那个语料现在还不会是很清楚。

(hanlp开源项目负责人hankcs)
基于最大熵的依存句法分析器
经过测试这个句法分析器为真的很坑,绝对不建议使用,测试代码见最后,作者原文介绍请点击击www.hankcs.com/nlp/parsing/to-achieve-the-maximum-entropy-of-the-dependency-parser.html
下面是使用的例子
基于神经网络的高性能依存句法分析器
from pyhanlp import *
# 依存句法分析
sentence = HanLP.parseDependency("徐先生还具体帮助他确定了把画雄鹰、松鼠和麻雀作为主攻目标。")
print(sentence)
for word in sentence.iterator(): # 通过dir()可以查看sentence的方法
print("%s --(%s)--> %s" % (word.LEMMA, word.DEPREL, word.HEAD.LEMMA))
print()
# 也可以直接拿到数组,任意顺序或逆序遍历
word_array = sentence.getWordArray()
for word in word_array:
print("%s --(%s)--> %s" % (word.LEMMA, word.DEPREL, word.HEAD.LEMMA))
print()
# 还可以直接遍历子树,从某棵子树的某个节点一路遍历到虚根
CoNLLWord = JClass("com.hankcs.hanlp.corpus.dependency.CoNll.CoNLLWord")
head = word_array[12]
while head.HEAD:
head = head.HEAD
if (head == CoNLLWord.ROOT):
print(head.LEMMA)
else:
print("%s --(%s)--> " % (head.LEMMA, head.DEPREL))
1 徐先生 徐先生 nh nr _ 4 主谓关系 _ _
2 还 还 d d _ 4 状中结构 _ _
3 具体 具体 a ad _ 4 状中结构 _ _
4 帮助 帮助 v v _ 0 核心关系 _ _
5 他 他 r r _ 4 兼语 _ _
6 确定 确定 v v _ 4 动宾关系 _ _
7 了 了 u u _ 6 右附加关系 _ _
8 把 把 p p _ 15 状中结构 _ _
9 画 画 v v _ 8 介宾关系 _ _
10 雄鹰 雄鹰 n n _ 9 动宾关系 _ _
11 、 、 wp w _ 12 标点符号 _ _
12 松鼠 松鼠 n n _ 10 并列关系 _ _
13 和 和 c c _ 14 左附加关系 _ _
14 麻雀 麻雀 n n _ 10 并列关系 _ _
15 作为 作为 v v _ 6 动宾关系 _ _
16 主攻 主攻 v vn _ 17 定中关系 _ _
17 目标 目标 n n _ 15 动宾关系 _ _
18 。 。 wp w _ 4 标点符号 _ _
徐先生 --(主谓关系)--> 帮助
还 --(状中结构)--> 帮助
具体 --(状中结构)--> 帮助
帮助 --(核心关系)--> ##核心##
他 --(兼语)--> 帮助
确定 --(动宾关系)--> 帮助
了 --(右附加关系)--> 确定
把 --(状中结构)--> 作为
画 --(介宾关系)--> 把
雄鹰 --(动宾关系)--> 画
、 --(标点符号)--> 松鼠
松鼠 --(并列关系)--> 雄鹰
和 --(左附加关系)--> 麻雀
麻雀 --(并列关系)--> 雄鹰
作为 --(动宾关系)--> 确定
主攻 --(定中关系)--> 目标
目标 --(动宾关系)--> 作为
。 --(标点符号)--> 帮助
徐先生 --(主谓关系)--> 帮助
还 --(状中结构)--> 帮助
具体 --(状中结构)--> 帮助
帮助 --(核心关系)--> ##核心##
他 --(兼语)--> 帮助
确定 --(动宾关系)--> 帮助
了 --(右附加关系)--> 确定
把 --(状中结构)--> 作为
画 --(介宾关系)--> 把
雄鹰 --(动宾关系)--> 画
、 --(标点符号)--> 松鼠
松鼠 --(并列关系)--> 雄鹰
和 --(左附加关系)--> 麻雀
麻雀 --(并列关系)--> 雄鹰
作为 --(动宾关系)--> 确定
主攻 --(定中关系)--> 目标
目标 --(动宾关系)--> 作为
。 --(标点符号)--> 帮助
麻雀 --(并列关系)-->
雄鹰 --(动宾关系)-->
画 --(介宾关系)-->
把 --(状中结构)-->
作为 --(动宾关系)-->
确定 --(动宾关系)-->
帮助 --(核心关系)-->
##核心##
最大熵依存句法分析器
MaxEntDependencyParser = JClass("com.hankcs.hanlp.dependency.MaxEntDependencyParser")
print("hankcs每天都在写程序")
print(MaxEntDependencyParser.compute("hankcs每天都在写程序"))
print("吴彦祖每天都在写程序")
print(MaxEntDependencyParser.compute("吴彦祖每天都在写程序"))
hankcs每天都在写程序
1 hankcs hankcs x x _ 6 限定 _ _
2 每天 每天 r r _ 5 施事 _ _
3 都 都 d d _ 5 程度 _ _
4 在 在 d d _ 5 程度 _ _
5 写 写 v v _ 0 核心成分 _ _
6 程序 程序 n n _ 5 内容 _ _
吴彦祖每天都在写程序
1 吴彦祖 吴彦祖 n nr _ 5 施事 _ _
2 每天 每天 r r _ 5 施事 _ _
3 都 都 d d _ 5 程度 _ _
4 在 在 d d _ 5 程度 _ _
5 写 写 v v _ 0 核心成分 _ _
6 程序 程序 n n _ 5 内容 _ _
作者:FontTian
pyhanlp 两种依存句法分类器的更多相关文章
- NLP+句法结构(三)︱中文句法结构(CIPS2016、依存句法、文法)
摘录自:CIPS2016 中文信息处理报告<第一章 词法和句法分析研究进展.现状及趋势>P8 -P11 CIPS2016> 中文信息处理报告下载链接:http://cips-uplo ...
- 转:NLP+句法结构(三)︱中文句法结构(CIPS2016、依存句法、文法)
NLP+句法结构(三)︱中文句法结构(CIPS2016.依存句法.文法)转自:https://www.cnblogs.com/maohai/p/6453389.html 摘录自:CIPS2016 中文 ...
- 学习笔记CB006:依存句法、LTP、n元语法模型、N-最短路径分词法、由字构词分词法、图论、概率论
依存句法分析,法国语言学家L.Tesniere1959年提出.句法,句子规则,句子成分组织规则.依存句法,成分间依赖关系.依赖,没有A,B存在错误.语义,句子含义. 依存句法强调介词.助词划分作用,语 ...
- 基于CRF序列标注的中文依存句法分析器的Java实现
这是一个基于CRF的中文依存句法分析器,内部CRF模型的特征函数采用 双数组Trie树(DoubleArrayTrie)储存,解码采用特化的维特比后向算法.相较于<最大熵依存句法分析器的实现&g ...
- MATLAB的两种移位运算
MATLAB的两种移位运算: 1)circshift矩阵移位 circshift:循环移位数组 语法:B = circshift(A,shiftize) 说明: B = circshift(A,sh ...
- 自学Linux Shell9.2-基于Red Hat系统工具包存在两种方式之一:RPM包
点击返回 自学Linux命令行与Shell脚本之路 9.2-基于Red Hat系统工具包存在两种方式之一:RPM包 本节主要介绍基于Red Had的系统(测试系统centos) 1. 工具包存在两种方 ...
- WordPress引入css/js两种方法
WordPress引入css/js 是我们制作主题时首先面对的一个难点,任何一款主题都要加载自己的css,js,甚至很有可能还需要加载Jquery文件,网上方法特多,说法不一,我们今天借鉴wordpr ...
- Android中手机录屏并转换GIF的两种方式
之前在博文中为了更好的给大家演示APP的实现效果,本人了解学习了几种给手机录屏的方法,今天就给大家介绍两种我个人用的比较舒服的两种方法: (1)配置adb环境后,使用cmd命令将手机界面操作演示存为视 ...
- Web APi之认证(Authentication)两种实现方式【二】(十三)
前言 上一节我们详细讲解了认证及其基本信息,这一节我们通过两种不同方式来实现认证,并且分析如何合理的利用这两种方式,文中涉及到的基础知识,请参看上一篇文中,就不再叙述废话. 序言 对于所谓的认证说到底 ...
随机推荐
- switfmailer 邮件时间错误 处理
Warning: date(): It is not safe to rely on the system's timezone settings. You are *required* to use ...
- mysql 数据库复制方法
同一台MySQL服务器上复制数据库的方法 CREATE DATABASE `新库` DEFAULT CHARACTER SET UTF8 COLLATE UTF8_GENERAL_CI; mysqld ...
- java学习笔记23(Set接口)
Set接口: 1.Set接口是不包含重复元素的Collection: 2.set集合没有索引,只能通过增强型for循环或迭代器来遍历: 3.Set接口只包含从collection接口继承的方法,并且增 ...
- HDU 1004 Let the Balloon Rise(map应用)
Problem Description Contest time again! How excited it is to see balloons floating around. But to te ...
- 1.Windows下使用VisualSVN Server搭建SVN服务器
使用 VisualSVN Server来实现主要的 SVN功能则要比使用原始的 SVN和Apache相配合来实现源代码的 SVN管理简单的多,下面就看看详细的说明. VisualSVN Server的 ...
- PaddlePaddle tutorial
什么是PaddlePaddle PaddlePaddle,百度旗下深度学习开源平台.Paddle(Parallel Distributed Deep Learning,并行分布式深度学习). 2016 ...
- threejs path controls example html
<!DOCTYPE html> <html lang="en"> <head> <title>three.js webgl - pa ...
- 1111B - Average Superhero Gang Power
刷数学题不知道为啥出来这个 算是贪心吧,先把所有的power加起来,然后sort一遍,每次删掉最小的那个数,记录一个max,平均值ave如果比max大,就替换,一定要小心m的值可能会比n小,意味着不一 ...
- eclipse如何为java项目生成API文档、JavaDoc
当我们的项目很大,编写了很多代码的时候,就需要生成一个标准的API文档,让后续的开发人员,或者合作者可以清晰的了解您方法的使用,那么如何将自己的项目生成API文档呢? 1.点击eclipse的[Pro ...
- 实验吧—安全杂项——WP之 你知道他是谁吗?
点击链接就可以下载下来一个压缩包 解压后得到一个图片 在百度上可以搜出他是 托马斯·杰斐逊(英语:Thomas Jefferson) 我们将名字输入到flag内,但是不对 我下一步直接用软件NSE查看 ...