《Python for Data Analysis》一书由Wes Mckinney所著,中文译名是《利用Python进行数据分析》。这里记录一下学习过程,其中有些方法和书中不同,是按自己比较熟悉的方式实现的。

第一个实例:1.usa.gov data from bit.ly

简介:2011年,URL缩短服务bit.ly和美国政府网站usa.gov合作,提供了一份从生成.gov或.mil短链接用户那里收集来的匿名数据

数据下载地址:https://github.com/wesm/pydata-book/blob/2nd-edition/datasets/bitly_usagov/example.txt

准备工作:导入pandas和matplotlib,因为需要读取JSON格式的文件,因此这里还需要导入json模块

import pandas as pd
import json
import matplotlib.pyplot as plt
fig,ax=plt.subplots()

首先,读取文件: (读取example文件后,file为由字符串组成的列表,然后我们再用json模块将file转换成JSON格式)

with open (r"...\example.txt") as f:
file=f.readlines() records=[json.loads(line) for line in file]

注:

json.load()是用来读取文件的

json.loads()是用来读取字符串的

看一下records的前5项:

[{'a': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.78 Safari/535.11', 'c': 'US', 'nk': 1, 'tz': 'America/New_York', 'gr': 'MA', 'g': 'A6qOVH', 'h': 'wfLQtf', 'l': 'orofrog', 'al': 'en-US,en;q=0.8', 'hh': '1.usa.gov', 'r': 'http://www.facebook.com/l/7AQEFzjSi/1.usa.gov/wfLQtf', 'u': 'http://www.ncbi.nlm.nih.gov/pubmed/22415991', 't': 1331923247, 'hc': 1331822918, 'cy': 'Danvers', 'll': [42.576698, -70.954903]}, {'a': 'GoogleMaps/RochesterNY', 'c': 'US', 'nk': 0, 'tz': 'America/Denver', 'gr': 'UT', 'g': 'mwszkS', 'h': 'mwszkS', 'l': 'bitly', 'hh': 'j.mp', 'r': 'http://www.AwareMap.com/', 'u': 'http://www.monroecounty.gov/etc/911/rss.php', 't': 1331923249, 'hc': 1308262393, 'cy': 'Provo', 'll': [40.218102, -111.613297]}, {'a': 'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; WOW64; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E; InfoPath.3)', 'c': 'US', 'nk': 1, 'tz': 'America/New_York', 'gr': 'DC', 'g': 'xxr3Qb', 'h': 'xxr3Qb', 'l': 'bitly', 'al': 'en-US', 'hh': '1.usa.gov', 'r': 'http://t.co/03elZC4Q', 'u': 'http://boxer.senate.gov/en/press/releases/031612.cfm', 't': 1331923250, 'hc': 1331919941, 'cy': 'Washington', 'll': [38.9007, -77.043098]}, {'a': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_8) AppleWebKit/534.52.7 (KHTML, like Gecko) Version/5.1.2 Safari/534.52.7', 'c': 'BR', 'nk': 0, 'tz': 'America/Sao_Paulo', 'gr': '', 'g': 'zCaLwp', 'h': 'zUtuOu', 'l': 'alelex88', 'al': 'pt-br', 'hh': '1.usa.gov', 'r': 'direct', 'u': 'http://apod.nasa.gov/apod/ap120312.html', 't': 1331923249, 'hc': 1331923068, 'cy': 'Braz', 'll': [-23.549999, -46.616699]}, {'a': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.79 Safari/535.11', 'c': 'US', 'nk': 0, 'tz': 'America/New_York', 'gr': 'MA', 'g': '9b6kNl', 'h': '9b6kNl', 'l': 'bitly', 'al': 'en-US,en;q=0.8', 'hh': 'bit.ly', 'r': 'http://www.shrewsbury-ma.gov/selco/', 'u': 'http://www.shrewsbury-ma.gov/egov/gallery/134127368672998.png', 't': 1331923251, 'hc': 1273672411, 'cy': 'Shrewsbury', 'll': [42.286499, -71.714699]}]

可以看到,records是由字典组成的列表,字典由key和value组成。每一个用户信息是一个字典,每一个字典的key代表一个特征,比如说tz就是时间区域。

接下来把records转换成pandas的DataFrame格式:

data=pd.DataFrame(records)

来看一下data的前5行:

   _heartbeat_                                                  a  \
0 NaN Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKi...
1 NaN GoogleMaps/RochesterNY
2 NaN Mozilla/4.0 (compatible; MSIE 8.0; Windows NT ...
3 NaN Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_8)...
4 NaN Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKi... al c cy g gr h hc \
0 en-US,en;q=0.8 US Danvers A6qOVH MA wfLQtf 1.331823e+09
1 NaN US Provo mwszkS UT mwszkS 1.308262e+09
2 en-US US Washington xxr3Qb DC xxr3Qb 1.331920e+09
3 pt-br BR Braz zCaLwp 27 zUtuOu 1.331923e+09
4 en-US,en;q=0.8 US Shrewsbury 9b6kNl MA 9b6kNl 1.273672e+09 hh kw l ll nk \
0 1.usa.gov NaN orofrog [42.576698, -70.954903] 1.0
1 j.mp NaN bitly [40.218102, -111.613297] 0.0
2 1.usa.gov NaN bitly [38.9007, -77.043098] 1.0
3 1.usa.gov NaN alelex88 [-23.549999, -46.616699] 0.0
4 bit.ly NaN bitly [42.286499, -71.714699] 0.0 r t \
0 http://www.facebook.com/l/7AQEFzjSi/1.usa.gov/... 1.331923e+09
1 http://www.AwareMap.com/ 1.331923e+09
2 http://t.co/03elZC4Q 1.331923e+09
3 direct 1.331923e+09
4 http://www.shrewsbury-ma.gov/selco/ 1.331923e+09 tz u
0 America/New_York http://www.ncbi.nlm.nih.gov/pubmed/22415991
1 America/Denver http://www.monroecounty.gov/etc/911/rss.php
2 America/New_York http://boxer.senate.gov/en/press/releases/0316...
3 America/Sao_Paulo http://apod.nasa.gov/apod/ap120312.html
4 America/New_York http://www.shrewsbury-ma.gov/egov/gallery/1341...

每一个用户是一行,每一个特征为一列。

假如我们想知道哪个地区的用户最多,该怎么做呢?

思路:提取tz(时间区域)这一列(当然不要忘了去除NA值和空值),然后用计数函数统计每个时间区域的数量。

time_zone=data['tz']  #提取tz列
time_zone_data=time_zone[time_zone!=''] #去除空值
time_zone_data=time_zone_data.dropna() #再去除无效值 time_zone_counts=time_zone_data.value_counts() #计数

让我们看一下前10位的时间区域:

America/New_York       1251
America/Chicago 400
America/Los_Angeles 382
America/Denver 191
Europe/London 74
Asia/Tokyo 37
Pacific/Honolulu 36
Europe/Madrid 35
America/Sao_Paulo 33
Europe/Berlin 28
Name: tz, dtype: int64

可以看到,美国纽约的用户最多,美国芝加哥其次。。。

用图画出来:

ax.barh(range(10), time_zone_counts[:10])
ax.set_yticks(range(10))
ax.set_yticklabels(time_zone_counts[:10].index.values)

让我们再来看一下data文件,可以看到,a这一列包含用户使用的浏览器、计算机系统等信息。同理,我们也可以把用户使用哪种浏览器最多统计出来。

首先,提取a这一列,清洗数据,由于浏览器数据是a这一列的其中一部分,因此把提取出的a这一列信息分隔开,提取其首项数据,也就是浏览器数据,然后用计数函数统计每个浏览器的数量。

browser=data['a'].dropna()
browser_data=pd.Series([i.split()[0] for i in browser]) browser_counts=browser_data.value_counts()

来看一下前10位的浏览器:

Mozilla/5.0                 2594
Mozilla/4.0 601
GoogleMaps/RochesterNY 121
Opera/9.80 34
TEST_INTERNET_AGENT 24
GoogleProducer 21
Mozilla/6.0 5
BlackBerry8520/5.0.0.681 4
Dalvik/1.4.0 3
BlackBerry8520/5.0.0.592 3
dtype: int64

上面说到,a这一列还包含有用户的计算机系统信息,如果我们想知道使用Windows系统和不使用Windows系统的用户分别是多少(按时区划分),该如何做呢?

首先,对数据进行清洗,提取a和tz列的有效值和非空值:

data=data[data['a'].notnull()]  #提取a列有效值
data=data[data['tz'].notnull()] #提取tz列有效值
data=data[data['tz']!=''] #提取tz列非空值

然后,用numpy的where函数来对数据进行分类:

import numpy as np
data["operating_system"]=np.where(data['a'].str.contains("Windows"),"Windows","Not Windows") #如果a这一列包含有Windows字样,则用户使用Windows系统

现在再来看一下data数据的前5行:

   _heartbeat_                                                  a  \
0 NaN Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKi...
1 NaN GoogleMaps/RochesterNY
2 NaN Mozilla/4.0 (compatible; MSIE 8.0; Windows NT ...
3 NaN Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_8)...
4 NaN Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKi... al c cy g gr h hc \
0 en-US,en;q=0.8 US Danvers A6qOVH MA wfLQtf 1.331823e+09
1 NaN US Provo mwszkS UT mwszkS 1.308262e+09
2 en-US US Washington xxr3Qb DC xxr3Qb 1.331920e+09
3 pt-br BR Braz zCaLwp 27 zUtuOu 1.331923e+09
4 en-US,en;q=0.8 US Shrewsbury 9b6kNl MA 9b6kNl 1.273672e+09 hh kw l ll nk \
0 1.usa.gov NaN orofrog [42.576698, -70.954903] 1.0
1 j.mp NaN bitly [40.218102, -111.613297] 0.0
2 1.usa.gov NaN bitly [38.9007, -77.043098] 1.0
3 1.usa.gov NaN alelex88 [-23.549999, -46.616699] 0.0
4 bit.ly NaN bitly [42.286499, -71.714699] 0.0 r t \
0 http://www.facebook.com/l/7AQEFzjSi/1.usa.gov/... 1.331923e+09
1 http://www.AwareMap.com/ 1.331923e+09
2 http://t.co/03elZC4Q 1.331923e+09
3 direct 1.331923e+09
4 http://www.shrewsbury-ma.gov/selco/ 1.331923e+09 tz u \
0 America/New_York http://www.ncbi.nlm.nih.gov/pubmed/22415991
1 America/Denver http://www.monroecounty.gov/etc/911/rss.php
2 America/New_York http://boxer.senate.gov/en/press/releases/0316...
3 America/Sao_Paulo http://apod.nasa.gov/apod/ap120312.html
4 America/New_York http://www.shrewsbury-ma.gov/egov/gallery/1341... operating_system
0 Windows
1 Not Windows
2 Windows
3 Not Windows
4 Windows

可以看到,已经出现了对应的操作系统这一列。

接下来,我们需要对数据进行分组: (按a列和operating_system列分组,对operating_system列计数)

by_tz_os=data.groupby(["tz","operating_system"])["operating_system"].count()

让我们来看一下by_tz_os的前10行:

tz                              operating_system
Africa/Cairo Windows 3
Africa/Casablanca Windows 1
Africa/Ceuta Windows 2
Africa/Johannesburg Windows 1
Africa/Lusaka Windows 1
America/Anchorage Not Windows 4
Windows 1
America/Argentina/Buenos_Aires Not Windows 1
America/Argentina/Cordoba Windows 1
America/Argentina/Mendoza Windows 1

这里已经列出了各个时区使用Windows系统的人数和不使用Windows系统的人数。但是这个格式不是我们想要的,我们想要Windows和Not Windows变成单独的两列。

因此,我们把by_tz_os展开,并把缺失值变为0:

tz_os_counts=by_tz_os.unstack().fillna(0)

现在tz_os_counts已经成为了我们想要的格式:

operating_system                Not Windows  Windows
tz
Africa/Cairo 0.0 3.0
Africa/Casablanca 0.0 1.0
Africa/Ceuta 0.0 2.0
Africa/Johannesburg 0.0 1.0
Africa/Lusaka 0.0 1.0
America/Anchorage 4.0 1.0
America/Argentina/Buenos_Aires 1.0 0.0
America/Argentina/Cordoba 0.0 1.0
America/Argentina/Mendoza 0.0 1.0
America/Bogota 1.0 2.0

接下来,我们对tz_os_counts进行排序(把使用Windows系统和不使用Windows系统人数最多的时区放在最前面):

tz_os_counts.sort_values(by=['Windows','Not Windows'], inplace=True, ascending=False)

排序完成:

operating_system     Not Windows  Windows
tz
America/New_York 339.0 912.0
America/Chicago 115.0 285.0
America/Los_Angeles 130.0 252.0
America/Denver 132.0 59.0
Pacific/Honolulu 0.0 36.0
Asia/Tokyo 2.0 35.0
Europe/London 43.0 31.0
America/Sao_Paulo 13.0 20.0
Europe/Madrid 16.0 19.0
Europe/Berlin 9.0 19.0

用堆积条形图画出来:

ax.barh(range(10), tz_os_counts["Not Windows"][:10]+tz_os_counts["Windows"][:10], label="Not Windows")
ax.barh(range(10), tz_os_counts["Windows"][:10], label="Windows")
ax.set_yticks(range(10))
ax.set_yticklabels(tz_os_counts[:10].index.values)
ax.legend() plt.show()

把图变成百分比形式:

ax.barh(range(10), (tz_os_counts["Not Windows"][:10]+tz_os_counts["Windows"][:10])/(tz_os_counts["Not Windows"][:10]+tz_os_counts["Windows"][:10]), label="Not Windows")
ax.barh(range(10), (tz_os_counts["Windows"][:10])/(tz_os_counts["Not Windows"][:10]+tz_os_counts["Windows"][:10]), label="Windows")
ax.set_yticks(range(10))
ax.set_yticklabels(tz_os_counts[:10].index.values)
ax.set_xlim(0,1)
ax.legend() plt.show()

数据分析---《Python for Data Analysis》学习笔记【01】的更多相关文章

  1. Python for Data Analysis 学习心得(一) - numpy介绍

    一.简介 Python for Data Analysis这本书的特点是将numpy和pandas这两个工具介绍的很详细,这两个工具是使用Python做数据分析非常重要的一环,numpy主要是做矩阵的 ...

  2. Python for Data Analysis 学习心得(四) - 数据清洗、接合

    一.文字处理 之前在练习爬虫时,常常爬了一堆乱七八糟的字符下来,当时就有找网络上一些清洗数据的方式,这边pandas也有提供一些,可以参考使用看看.下面为两个比较常见的指令,往往会搭配使用. spli ...

  3. Python for Data Analysis 学习心得(三) - 文件读写和数据预处理

    一.Pandas文件读写 pandas很核心的一个功能就是数据读取.导入,pandas支援大部分主流的数据储存格式,并在导入的时候可以做筛选.预处理.在读取数据时的选项有超过50个参数,可见panda ...

  4. Python for Data Analysis 学习心得(二) - pandas介绍

    一.pandas介绍 本篇程序上篇内容,在numpy下面继续介绍pandas,本书的作者是pandas的作者之一.pandas是非常好用的数据预处理工具,pandas下面有两个数据结构,分别为Seri ...

  5. 数据分析---《Python for Data Analysis》学习笔记【04】

    <Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同 ...

  6. 数据分析---《Python for Data Analysis》学习笔记【03】

    <Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同 ...

  7. 数据分析---《Python for Data Analysis》学习笔记【02】

    <Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同 ...

  8. 学习笔记之Python for Data Analysis

    Python for Data Analysis, 2nd Edition https://www.safaribooksonline.com/library/view/python-for-data ...

  9. 1.2 Why Python for Data Analysis(为什么使用Python做数据分析)

    1.2 Why Python for Data Analysis?(为什么使用Python做数据分析) 这节我就不进行过多介绍了,Python近几年的发展势头是有目共睹的,尤其是在科学计算,数据处理, ...

随机推荐

  1. asp.net core参数保护之自定义要保护的参数类型

    asp.net core参数保护之自定义要保护的参数类型 Intro 为了实现 asp.net core 下的参数保护,扩展了asp.net core 中 DataProtection,可以自动化的保 ...

  2. 章节九、2-使用firefoxdriver浏览器进行自动化测试

    一.演示如何使用火狐浏览器打开“百度” package basicweb; import org.openqa.selenium.WebDriver; import org.openqa.seleni ...

  3. 第三篇 Html-label标签

    label标签 用户获取文字,使得关联的标签获取光标 <!DOCTYPE html> <html lang="en"> <head> <m ...

  4. 作业三——安卓系统文件助手APP原型设计

    原型地址:https://modao.cc/app/X2totLUvbcxBwtJGk6AI04FZnGD4s08#screen=s43A40176351539085924682 MVP支持的浏览器: ...

  5. chart 模板 - 每天5分钟玩转 Docker 容器技术(165)

    Helm 通过模板创建 Kubernetes 能够理解的 YAML 格式的资源配置文件,我们将通过例子来学习如何使用模板. 以 templates/secrets.yaml 为例: 从结构看,文件的内 ...

  6. Xamarin 开发过的那些项目

    您可能已经看到类似的统计数据:智能手机用户在手机媒体上花费了89%的时间使用应用程序.或者听说Gartner预测到2017年移动应用程序下载将产生价值770亿美元的收入.很难不考虑这些数字.今天,每个 ...

  7. selenium-判断元素是否可见(五)

    很多 case 在运行时都会出现页面还没加载完成,但是脚本已经跑完,并且报未找到元素 这是就需要增加判断,在预定的时间内如果页面显示了某元素后再让脚本继续执行,则为判断元素是否可见或者说页面是否显示了 ...

  8. mysql免安装版初次使用

    在自己电脑上安装一个mysql数据库并启动,碰到一些问题,总结一下 1.下载免安装版mysql数据库,百度下载了了5.7.25版本 2.在bin文件夹下找到my-defaults.ini文件,我这没有 ...

  9. Python列表之班荆道故

    列表list初识 列表是python的基础数据类型之一 ,它是以[ ]括起来, 每个元素用' , '隔开而且可以存放各种数据类型: list列表的定义: list_ = []list_1 = [&qu ...

  10. 【转载】【时序约束学习笔记1】Vivado入门与提高--第12讲 时序分析中的基本概念和术语

    时序分析中的基本概念和术语 Basic concept and Terminology of Timing Analysis 原文标题及网址: [时序约束学习笔记1]Vivado入门与提高--第12讲 ...