problem1 link

对于数字$x$,检验每个满足$x=y*2^{t}$的$y$能否变成$x$即可。

problem2 link

如果起点到终点有一条长度为$L$的路径,那么就存在长度为$L+kR$的路径。其中$R$为从路径上某点转一圈再回到这一点的环的长度。

为了保证总是存在这个环,可以令这个环为从起点出发再回到起点。所以如果有一条长度为$d$的边$0\rightarrow t$,那么可以令$R=2d$,即$0\rightarrow t \rightarrow 0$.

只需要记录起点到达某个点长度模$R$的最短路即可。即用$f[m][u]$表示从0到$u$的最小的满足$m+kR$的路径长度。

只要$f[T$%$R][N-1] \leq T$即可。

problem3 link

红色和绿色需要配对出现。所以可以将一个红色一个绿色看作一个整体。那么就是$M$组中每组要出现$D$个配对的整体。

从前向后进行动态规划,只统计出现了多少个配对的整体以及还有多少个只配对了一半的。

这里有个问题是每一组中的$D$个整体不能交叉出现。为了做到这一点,只需要配对了一半的个数不超过$M$即可.

code for problem1

#include <set>
#include <vector> class AmebaDiv1 {
public:
int count(const std::vector<int> &X) {
auto Get = [&](int t) {
for (auto e : X) {
if (e == t) {
t *= 2;
}
}
return t;
}; std::set<int> all(X.begin(), X.end());
int result = 0;
for (auto e : all) {
bool tag = (Get(1) != e);
int t = e;
while (t > 1) {
if (Get(t) == e) {
tag = false;
break;
}
t /= 2;
}
if (tag) {
++result;
}
} return result;
}
};

code for problem2

#include <cstring>
#include <set>
#include <string>
#include <vector> constexpr int MAXD = 20000;
constexpr int MAXN = 50; long long dist[MAXD][MAXN]; class LongLongTripDiv1 {
public:
std::string isAble(int N, const std::vector<int> &A,
const std::vector<int> &B, const std::vector<int> &D,
long long T) {
int n = static_cast<int>(A.size());
int d = MAXD + 1;
for (int i = 0; i < n; ++i) {
if (A[i] == 0 || B[i] == 0) {
d = std::min(d, D[i]);
}
} if (d == MAXD + 1) {
return "Impossible";
} std::set<std::pair<long long, std::pair<int, int>>> que;
memset(dist, -1, sizeof(dist));
auto Insert = [&](long long dis, int u, int v) {
auto iter = que.find({dist[u][v], {u, v}});
if (iter != que.end()) {
que.erase(iter);
}
que.insert({dis, {u, v}});
dist[u][v] = dis;
};
Insert(0, 0, 0);
while (!que.empty()) {
auto node = que.begin()->second;
que.erase(que.begin());
int u = node.second;
for (int i = 0; i < n; ++i) {
if (A[i] != u && B[i] != u) {
continue;
}
int v = A[i] + B[i] - u;
int t = (node.first + D[i]) % (2 * d);
long long new_dist = dist[node.first][u] + D[i];
if (dist[t][v] == -1 || new_dist < dist[t][v]) {
Insert(new_dist, t, v);
}
}
}
auto min_dist = dist[T % (d * 2)][N - 1];
return (min_dist != -1 && min_dist <= T) ? "Possible" : "Impossible";
}
};

code for problem3

#include <string>

constexpr int MOD = 1000000007;

int f[5005][50][51];

class AlternativePiles {
public:
int count(const std::string &C, int M) {
if (Red(C[0])) {
f[0][0][1] += 1;
}
if (Blud(C[0])) {
f[0][0][0] += 1;
}
for (size_t idx = 1; idx < C.size(); ++idx) {
char c = C[idx];
for (int x = 0; x < M; ++x) {
for (int y = 0; y <= M; ++y) {
int t = f[idx - 1][x][y];
if (t == 0) {
continue;
}
if (Red(c) && y + 1 <= M) {
(f[idx][x][y + 1] += t) %= MOD;
}
if (Blud(c)) {
(f[idx][x][y] += t) %= MOD;
}
if (Green(c) && y > 0) {
(f[idx][(x + 1) % M][y - 1] += t) %= MOD;
}
}
}
}
return f[C.size() - 1][0][0];
} private:
bool Red(char c) { return c == 'R' || c == 'W'; } bool Green(char c) { return c == 'G' || c == 'W'; } bool Blud(char c) { return c == 'B' || c == 'W'; }
};

topcoder srm 615 div1的更多相关文章

  1. Topcoder SRM 643 Div1 250<peter_pan>

    Topcoder SRM 643 Div1 250 Problem 给一个整数N,再给一个vector<long long>v; N可以表示成若干个素数的乘积,N=p0*p1*p2*... ...

  2. Topcoder Srm 726 Div1 Hard

    Topcoder Srm 726 Div1 Hard 解题思路: 问题可以看做一个二分图,左边一个点向右边一段区间连边,匹配了左边一个点就能获得对应的权值,最大化所得到的权值的和. 然后可以证明一个结 ...

  3. SRM 615 DIV1 500

    TC 都615了...时间过的真快啊. 第一次做出500分,心情还是很激动的,虽然看了很久的题解,TC官网上的题解,很详细,但是英语的...我搜了搜,发现一份日语的...好吧,我还是看看英语的吧... ...

  4. topcoder srm 714 div1

    problem1 link 倒着想.每次添加一个右括号再添加一个左括号,直到还原.那么每次的右括号的选择范围为当前左括号后面的右括号减去后面已经使用的右括号. problem2 link 令$h(x) ...

  5. topcoder srm 738 div1 FindThePerfectTriangle(枚举)

    Problem Statement      You are given the ints perimeter and area. Your task is to find a triangle wi ...

  6. Topcoder SRM 602 div1题解

    打卡- Easy(250pts): 题目大意:rating2200及以上和2200以下的颜色是不一样的(我就是属于那个颜色比较菜的),有个人初始rating为X,然后每一场比赛他的rating如果增加 ...

  7. Topcoder SRM 627 div1 HappyLettersDiv1 : 字符串

    Problem Statement      The Happy Letter game is played as follows: At the beginning, several players ...

  8. Topcoder SRM 584 DIV1 600

    思路太繁琐了 ,实在不想解释了 代码: #include<iostream> #include<cstdio> #include<string> #include& ...

  9. TopCoder SRM 605 DIV1

    604的题解还没有写出来呢.先上605的. 代码去practice房间找. 说思路. A: 贪心,对于每个类型的正值求和,如果没有正值就取最大值,按着求出的值排序,枚举选多少个类型. B: 很明显是d ...

随机推荐

  1. python3 文件读写操作中的文件指针seek()使用

    python中可以使用seek()移动文件指针到指定位置,然后读/写.通常配合 r+ .w+.a+ 模式,在此三种模式下,seek指针移动只能从头开始移动,即seek(x,0) . 模式 默认 写方式 ...

  2. Elasticsearch学习笔记(十二)filter与query

    一.keyword 字段和keyword数据类型    1.测试准备数据 POST /forum/article/_bulk { "index": { "_id" ...

  3. Linux 的umask详解

    1.由权限得到umask的值 umask是一个系统变量,是一个由3个八进制数字组成的值,具体含义见表:每个数字都是八进制值1.2.4的OR操作结果. 作用:当文件被创建时,为文件的访问权限设定一个掩码 ...

  4. Spring Boot web简介及原理 day04

    一.SpringBoot创建web开发(三部曲) 1.快速构建SpringBoot项目,并以jar包的形式构建 2.选择对应的功能模块 (选定场景,配置少量的配置就可运行,不配置有默认值) 3.编写自 ...

  5. JavaScript 中 return,return true,return false

    1.return: ①return + 表达式,调用函数,并返回表达式的值 ②return,终止函数 ③当代码执行到return语句时,函数返回一个结果就结束运行了,return后面的语句根本不会执行 ...

  6. linux cp 拷贝文件或目录

    cp 拷贝文件或目录 默认不能拷贝目录 常用来备份: [root@MongoDB ~]# cp a.txt /tmp/ [root@MongoDB ~]# cp /root/a.txt /tmp/ c ...

  7. 第四周Java作业

    老师说让用二维数组找最大,也就是最大和块,要求必须挨着,我其实不会写这个程序,所以我只能把自己的思路写出来 我觉得可以大问题缩小,我的思路是先把四个数一个正方形来进行计算,然后六个数矩形,把他化成两个 ...

  8. C/C++ 获取系统时间 到秒 || 到毫秒

    string getNowSysTime(string &outPut) { ] = {}; struct timeval tv; struct timezone tz; struct tm ...

  9. linux----------linux下安装rar和unrar命令

    1.wget http://www.rarlab.com/rar/rarlinux-x64-4.2.0.tar.gz 2.tar xf rarlinux-x64-4.2.0.tar.gz    解压下 ...

  10. Git使用和Vue项目

    1.创建git排除文件,.gitignore 2.READEME.md 和 LICENSE开源协议 git init  创建仓库 , git status 查看文件状态 红色文件表示未提交. git ...