Numpy系列(四)- 索引和切片
Python 中原生的数组就支持使用方括号([])进行索引和切片操作,Numpy 自然不会放过这个强大的特性。
单个元素索引
1-D数组的单元素索引是人们期望的。它的工作原理与其他标准Python序列一样。它是从0开始的,并且接受负索引来从数组的结尾进行索引。
import numpy as np
a = np.arange(10)
a
Out[130]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
a[3]
Out[131]: 3
a[-2]
Out[132]: 8
与Python原生的列表、元组不同的是,Numpy数组支持多维数组的多维索引。
a.shape
Out[133]: (10,)
a.resize(2, 5)
a
Out[135]:
array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]])
a[0, 1]
Out[136]: 1
a[1, 2]
Out[137]: 7
a[1]
Out[138]: array([5, 6, 7, 8, 9])
a[1][2]
Out[139]: 7
x[1,-1] 的结果等于 x[1][-1],但是第二种情况效率更低,因为第二种方式创建了一个临时数组。
切片支持
可以使用切片和步长来截取不同长度的数组,使用方式与Python原生的对列表和元组的方式相同。
x = np.arange(10)
x[2:5]
Out[140]: array([2, 3, 4])
x[2:5]
Out[141]: array([2, 3, 4])
x[:-2]
Out[142]: array([0, 1, 2, 3, 4, 5, 6, 7])
x[1:7:2]
Out[143]: array([1, 3, 5])
y = np.arange(35).reshape(5,7)
y
Out[144]:
array([[ 0, 1, 2, 3, 4, 5, 6],
[ 7, 8, 9, 10, 11, 12, 13],
[14, 15, 16, 17, 18, 19, 20],
[21, 22, 23, 24, 25, 26, 27],
[28, 29, 30, 31, 32, 33, 34]])
y[1:5:2,:3]
Out[145]:
array([[ 7, 8, 9],
[21, 22, 23]])
y[1:5:2,::3]
Out[146]:
array([[ 7, 10, 13],
[21, 24, 27]])
注意:使用切片不会复制内部数组数据,但也会生成原始数据的新视图。
索引数组
Numpy数组可以被其他数组索引。对于索引数组的所有情况,返回的是原始数据的副本,而不是一个获取切片的视图。
索引数组必须是整数类型。
x = np.arange(10,1,-1)
x
Out[147]: array([10, 9, 8, 7, 6, 5, 4, 3, 2])
x[np.array([1,3,4,])]
Out[148]: array([9, 7, 6])
使用索引数组来对被索引数组进行索引后,会生成一个与索引数组形状相同的新数组,只是这个新数组的值会用被索引数组中对应索引的值替代。
x[np.array([3, 3, 1, 8])]
布尔索引数组
使用(整数)索引列表时,需要提供要选择的索引列表,最后生成的结果形状与索引数组形状相同;但是在使用布尔索引时,布尔数组必须与要编制索引的数组的初始维度具有相同的形状。在最直接的情况下,布尔数组具有相同的形状:
y
Out[149]:
array([[ 0, 1, 2, 3, 4, 5, 6],
[ 7, 8, 9, 10, 11, 12, 13],
[14, 15, 16, 17, 18, 19, 20],
[21, 22, 23, 24, 25, 26, 27],
[28, 29, 30, 31, 32, 33, 34]])
b = y>20
b
Out[150]:
array([[False, False, False, False, False, False, False],
[False, False, False, False, False, False, False],
[False, False, False, False, False, False, False],
[ True, True, True, True, True, True, True],
[ True, True, True, True, True, True, True]])
y[b]
Out[151]: array([21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34])
y[y>20]
Out[152]: array([21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34])
与整数索引数组的情况不同,在布尔数组中,结果是1-D数组,其包含索引数组中的所有元素,对应于布尔数组中的所有真实元素。索引数组中的元素始终以行优先(C样式)顺序进行迭代和返回。结果也与y[np.nonzero(b)]
相同。与索引数组一样,返回的是数据的副本,而不是一个获取切片的视图。
如果y比b的维数更高,则结果将是多维的。例如:
b[:,5]
Out[153]: array([False, False, False, True, True])
y[b[:,5]]
Out[154]:
array([[21, 22, 23, 24, 25, 26, 27],
[28, 29, 30, 31, 32, 33, 34]])
结构化索引工具
为了便于数组形状与表达式和赋值关系的匹配,可以在数组索引中使用np.newaxis对象来添加大小为1的新维。例如
y.shape
Out[155]: (5, 7)
y[:,np.newaxis,:].shape
Out[157]: (5, 1, 7)
注意,在数组中没有新的元素,只是维度增加。这可以方便地以一种方式组合两个数组,否则将需要明确重塑操作。例如:
x = np.arange(5)
x
Out[158]: array([0, 1, 2, 3, 4])
x[:,np.newaxis] + x[np.newaxis,:]
Out[159]:
array([[0, 1, 2, 3, 4],
[1, 2, 3, 4, 5],
[2, 3, 4, 5, 6],
[3, 4, 5, 6, 7],
[4, 5, 6, 7, 8]])
省略语法(三个点)可以用于指示完全选择任何剩余的未指定维度。如果数组z的形状是(3,3,3,3),那么z[1,...,2]等效于z[1,:,:,2]。例如:
z = np.arange(81).reshape(3,3,3,3)
z
Out[160]:
array([[[[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8]],
[[ 9, 10, 11],
[12, 13, 14],
[15, 16, 17]],
[[18, 19, 20],
[21, 22, 23],
[24, 25, 26]]],
[[[27, 28, 29],
[30, 31, 32],
[33, 34, 35]],
[[36, 37, 38],
[39, 40, 41],
[42, 43, 44]],
[[45, 46, 47],
[48, 49, 50],
[51, 52, 53]]],
[[[54, 55, 56],
[57, 58, 59],
[60, 61, 62]],
[[63, 64, 65],
[66, 67, 68],
[69, 70, 71]],
[[72, 73, 74],
[75, 76, 77],
[78, 79, 80]]]])
z[1,...,2]
Out[161]:
array([[29, 32, 35],
[38, 41, 44],
[47, 50, 53]])
z[1,:,:,2]
Out[162]:
array([[29, 32, 35],
[38, 41, 44],
[47, 50, 53]])
给被索引的数组赋值
可以使用单个索引,切片,索引和布尔数组来选择数组的子集来分配。分配给索引数组的值必须是形状一致的(相同的形状或可广播到索引产生的形状)。例如,允许为切片分配常量:
x = np.arange(10)
x[2:7]
Out[163]: array([2, 3, 4, 5, 6])
x[2:7] = np.arange(5)
x
Out[164]: array([0, 1, 0, 1, 2, 3, 4, 7, 8, 9])
Numpy系列(四)- 索引和切片的更多相关文章
- numpy数组的索引和切片
numpy数组的索引和切片 基本切片操作 >>> import numpy as np >>> arr=np.arange(10) >>> arr ...
- 利用Python进行数据分析(5) NumPy基础: ndarray索引和切片
概念理解 索引即通过一个无符号整数值获取数组里的值. 切片即对数组里某个片段的描述. 一维数组 一维数组的索引 一维数组的索引和Python列表的功能类似: 一维数组的切片 一维数组的切片语法格式为a ...
- 3.4Python数据处理篇之Numpy系列(四)---ndarray 数组的运算
目录 目录 (一)数组与标量的运算 1.说明: 2.实例: (二)元素级的运算(一元函数) 1.说明: 2.实例: (三)数组级的运算(二元函数) 1.说明: 2.实例: 目录 1.数组与标量的运算 ...
- NumPy学习(索引和切片,合并,分割,copy与deep copy)
NumPy学习(索引和切片,合并,分割,copy与deep copy) 目录 索引和切片 合并 分割 copy与deep copy 索引和切片 通过索引和切片可以访问以及修改数组元素的值 一维数组 程 ...
- Numpy:索引与切片
numpy基本的索引和切片 import numpy as np arr = np.array([1,2,3,555,666,888,10]) arr array([ 1, 2, 3, 555, 66 ...
- 3.3Python数据处理篇之Numpy系列(三)---数组的索引与切片
目录 (一)数组的索引与切片 1.说明: 2.实例: (二)多维数组的索引与切片 1.说明: 2.实例: 目录: 1.一维数组的索引与切片 2.多维数组的索引与切片 (一)数组的索引与切片 1.说明: ...
- NumPy 学习 第二篇:索引和切片
数组索引是指使用中括号 [] 来定位数据元素,不仅可以定位到单个元素,也可以定位到多个元素.索引基于0,并接受从数组末尾开始索引的负索引. 举个例子,正向索引从0开始,从数组开始向末尾依次加1递增:负 ...
- Numpy数组基本操作(数组索引,数组切片以及数组的形状,数组的拼接与分裂)
一:数组的属性 每个数组都有它的属性,可分为:ndim(数组的维度),shape(数组每个维度的大小),size(数组的总大小),dtype(数组数据的类型) 二:数组索引 和python列表一样,N ...
- numpy之索引和切片
索引和切片 一维数组 一维数组很简单,基本和列表一致. 它们的区别在于数组切片是原始数组视图(这就意味着,如果做任何修改,原始都会跟着更改). 这也意味着,如果不想更改原始数组,我们需要进行显式的复制 ...
随机推荐
- 微信小程序发红包
背景: 近期一个朋友公司要做活动,活动放在小程序上.小程序开发倒是不难,不过要使用小程序给微信用户发红包,这个就有点麻烦 确定模式: 小程序目前没有发红包接口,要实现的话,只能是模拟红包,即小程序上做 ...
- MySQL之Innodb恢复的学习笔记
MySQL · 引擎特性 · InnoDB 崩溃恢复过程 enum { SRV_FORCE_IGNORE_CORRUPT = 1, /*!< let the server run even if ...
- c/c++ 多线程 unique_lock的使用
多线程 unique_lock的使用 unique_lock的特点: 1,灵活.可以在创建unique_lock的实例时,不锁,然后手动调用lock_a.lock()函数,或者std::lock(lo ...
- Linux 自动化部署DNS服务器
Linux 自动化部署DNS服务器 1.首先配置主DNS服务器的IP地址,DNS地址一个写主dns的IP地址,一个写从dns的地址,这里也可以不写,在测试的时候在/etc/resolv.conf中添加 ...
- 基于udp简单聊天的系统
老师博客:http://www.cnblogs.com/Eva-J/articles/8244551.html#_label4 基于udp的简单的聊天代码 说明:这段代码,显示有client向serv ...
- 理论铺垫:阻塞IO、非阻塞IO、IO多路复用/事件驱动IO(单线程高并发原理)、异步IO
完全来自:http://www.cnblogs.com/alex3714/articles/5876749.html 同步IO和异步IO,阻塞IO和非阻塞IO分别是什么,到底有什么区别?不同的人在不同 ...
- .NET CORE学习笔记系列(2)——依赖注入[7]: .NET Core DI框架[服务注册]
原文https://www.cnblogs.com/artech/p/net-core-di-07.html 包含服务注册信息的IServiceCollection对象最终被用来创建作为DI容器的IS ...
- Python开发【第二篇】运算符
"+" 加号 __author__ = 'Tang' a = 8 b = 9 c = a + b a = 8.0 b = 9 c = a + b print(c) # 17.0 a ...
- addq
<template> <el-row id="AddRoom"> <el-col :xs="0" :sm="2" ...
- Mac下MySql初始密码设置及mysql数据库操作
1. 首先 点击系统偏好设置 -> 点击MySQL, 在弹出的页面中,关闭服务.2. 进入终端命令输出: cd /usr/local/mysql/bin/ 命令,回车.3. 回车后,输入命令:s ...