若仅保留这$k$个点仍然有环,那么显然无解。

否则设$A$表示这$k$个点的集合,$B$表示剩下的点的集合,因为是竞赛图,每个集合内部的拓扑关系是一条链,方便起见将所有点按照在所在集合的链上的位置进行重标号。

对于$B$中每个点$i$,求出$l_i$表示最小的$j$,满足$B_i\rightarrow A_j$有边,再求出$r_i$表示最大的$j$,满足$A_j\rightarrow B_i$有边。

那么需要保留$B$中尽可能多的点,满足对于任意两个点$B_j,B_i(j\leq i)$都有$r_j<l_i$,不然就会有环,即$l_i>\max(r_j)(j\leq i)$。

考虑DP,设$f[i][j]$表示考虑$B$中前$i$个点,前面选择的点的$r$的最大值为$j$时最多可以选择几个点,暴力转移即可。

时间复杂度$O(n^2)$。

#include<cstdio>
const int N=2010,BUF=12000000;
char Buf[BUF],*buf=Buf;
int n,m,i,j,x,y,l[N],r[N],L,R,a[N],ca,b[N],cb,q[N],h,t,d[N],cnt;bool g[N][N],vip[N];
int f[N][N],ans;
inline void read(int&a){for(a=0;*buf<48;buf++);while(*buf>47)a=a*10+*buf++-48;}
void toposort(int S){
for(i=1;i<=n;i++)d[i]=0;
for(i=1;i<=n;i++)if(vip[i]==S)for(j=1;j<=n;j++)if(vip[j]==S)d[j]+=g[i][j];
for(h=i=1,t=cnt=0;i<=n;i++)if(vip[i]==S){
cnt++;
if(!d[i])q[++t]=i;
}
while(h<=t)for(x=q[h++],i=1;i<=n;i++)if(vip[i]==S&&g[x][i])if(!(--d[i]))q[++t]=i;
}
inline void up(int&a,int b){a<b?(a=b):0;}
inline int max(int a,int b){return a>b?a:b;}
int main(){
fread(Buf,1,BUF,stdin);read(n),read(m);
for(i=1;i<=n;i++)for(j=1;j<=n;j++)read(x),g[i][j]=x;
for(i=1;i<=m;i++)read(x),vip[x]=1;
toposort(1);
if(t<cnt)return puts("impossible"),0;
for(i=1;i<=cnt;i++)a[++ca]=q[i];
toposort(0);
for(i=1;i<=cnt;i++)b[++cb]=q[i];
for(i=1;i<=ca;i++)d[a[i]]=i;
for(i=1;i<=cb;i++){
x=b[i];
L=ca+1,R=0;
for(j=1;j<=n;j++)if(vip[j]){
y=d[j];
if(g[x][j]){
if(y<L)L=y;
}else if(y>R)R=y;
}
for(j=0;j<=ca;j++)f[i][j]=f[i-1][j];
if(L>R)for(j=0;j<L;j++)up(f[i][j>R?j:R],f[i-1][j]+1);
}
for(j=0;j<=ca;j++)up(ans,f[cb][j]);
ans=cb-ans;
if(ans>=m)puts("impossible");else printf("%d",ans);
return 0;
}

  

BZOJ5412 : circle的更多相关文章

  1. [翻译svg教程]svg中的circle元素

    svg中的<circle> 元素,是用来绘制圆形的,例如 <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink= ...

  2. 设计一个程序,程序中有三个类,Triangle,Lader,Circle。

    //此程序写出三个类,triangle,lader,circle:其中triangle类具有类型为double的a,b,c边以及周长,面积属性, //具有周长,面积以及修改三边的功能,还有判断能否构成 ...

  3. c++作业:Circle

    Circle Github链接

  4. Modified Least Square Method and Ransan Method to Fit Circle from Data

    In OpenCv, it only provide the function fitEllipse to fit Ellipse, but doesn't provide function to f ...

  5. [javascript svg fill stroke stroke-width circle 属性讲解] svg fill stroke stroke-width circle 属性 绘制圆形及引入方式讲解

    <!DOCTYPE html> <html lang='zh-cn'> <head> <title>Insert you title</title ...

  6. (1)编写一个接口ShapePara,要求: 接口中的方法: int getArea():获得图形的面积。int getCircumference():获得图形的周长 (2)编写一个圆类Circle,要求:圆类Circle实现接口ShapePara。 该类包含有成员变量: radius:public 修饰的double类型radius,表示圆的半径。 x:private修饰的double型变量x,

    package com.hanqi.test; //创建接口 public interface ShapePara { //获取面积的方法 double getArea(); //获取周长的方法 do ...

  7. 东大oj-1591 Circle of friends

    题目描述 Nowadays, "Circle of Friends" is a very popular social networking platform in WeChat. ...

  8. svg学习(四)circle

    <circle> 标签 < <?xml version="1.0" standalone="no"?> <!DOCTYPE ...

  9. 后缀数组 --- WOj 1564 Problem 1564 - A - Circle

    Problem 1564 - A - Circle Problem's Link:   http://acm.whu.edu.cn/land/problem/detail?problem_id=156 ...

随机推荐

  1. 如何在Eclipse中创建web项目并使用tomcat8 运行servlet开发简单的动态网页?

    今天花了一天时间.因为用eclipse没多久,不是很熟悉使用,看的教程又是使用myeclipse的,但是eclipse相对没有myeclipse灵活,所以在网上找了很多资料,最后算是可以实现了.新手可 ...

  2. gdb nnet3-compute

    gdb nnet3-compute测试命令 $ matrix-dim 'scp: head -n 1 data/test/feats.scp|' ~/kaldi/src/bin/matrix-dim ...

  3. SQL - for xml path('') 实现多行合并到一行, 并带有分隔符

    docs.microsoft.com 链接:  SQL一个应用场景与FOR XML PATH应用 首先呢!我们在增加一张学生表,列分别为(stuID,sName,hobby),stuID代表学生编号, ...

  4. dml并行

    Enabling Parallel DMLA DML statement can be parallelized only if you have explicitly enabled paralle ...

  5. C++入门篇十二

    成员变量和成员属性: 静态成员函数和静态成员变量是不属于对象的,所以不占有空间,非静态成员是属于对象的,占有存储空间,空类大小1 #include "pch.h" #include ...

  6. 关于COOKIE在本地可以正常写入发布后不能写入浏览器的问题

    看了一下cookie的属性设置如下: HTTP Cookie       设置了secure ,   该cookie只能在HTTPS通道下被写入浏览器. HTTPS Cookie     设置了sec ...

  7. 使用element-ui遇到的各种小问题

    一.Dialog对话框 1.在使用嵌套Dialog的时候,会出现遮罩层在内容的上方这种错乱情况 解决办法:http://element-cn.eleme.io/#/zh-CN/component/di ...

  8. Mybatis面试集合(转)

    Mybatis技术内幕系列博客,从原理和源码角度,介绍了其内部实现细节,无论是写的好与不好,我确实是用心写了,由于并不是介绍如何使用Mybatis的文章,所以,一些参数使用细节略掉了,我们的目标是介绍 ...

  9. JSP随记

    JSP简介: JSP全名为Java Server Pages,中文名叫java服务器页面,其根本是一个简化的Servlet设计,它是由Sun公司倡导.许多公司参与一起建立的一种动态网页技术标准. Se ...

  10. form 表单提交数据 不跳转解决办法

    1.  利用隐藏的 iframe —— 只需form的 target 指向iframe的name:可不用form 的action默认提交,自己写ajax 提交数据. <html> < ...