matlab的Deep Learning的toolbox 中的SAE算法
最近一直在看Deep Learning,各类博客、论文看得不少
但是说实话,这样做有些疏于实现,一来呢自己的电脑也不是很好,二来呢我目前也没能力自己去写一个toolbox
只是跟着Andrew Ng的UFLDL tutorial 写了些已有框架的代码(这部分的代码见github)
后来发现了一个matlab的Deep Learning的toolbox,发现其代码很简单,感觉比较适合用来学习算法
再一个就是matlab的实现可以省略掉很多数据结构的代码,使算法思路非常清晰
所以我想在解读这个toolbox的代码的同时来巩固自己学到的,同时也为下一步的实践打好基础
(本文只是从代码的角度解读算法,具体的算法理论步骤还是需要去看paper的
我会在文中给出一些相关的paper的名字,本文旨在梳理一下算法过程,不会深究算法原理和公式)
==========================================================================================
使用的代码:DeepLearnToolbox ,下载地址:点击打开,感谢该toolbox的作者
==========================================================================================
今天介绍的呢是DL另一个非常重要的模型:SAE
把这个放在最后来说呢,主要是因为在UFLDL tutorial 里已经介绍得比较详细了,二来代码非常简单(在NN的基础之上)
先放一张autoencoder的基本结构:
![]()
基本意思就是一个隐藏层的神经网络,输入输出都是x,属于无监督学习
==========================================================================================
基本代码
saesetup.m
- function sae = saesetup(size)
- for u = 2 : numel(size)
- sae.ae{u-1} = nnsetup([size(u-1) size(u) size(u-1)]);
- end
- end
saetrain.m
- function sae = saetrain(sae, x, opts)
- for i = 1 : numel(sae.ae);
- disp(['Training AE ' num2str(i) '/' num2str(numel(sae.ae))]);
- sae.ae{i} = nntrain(sae.ae{i}, x, x, opts);
- t = nnff(sae.ae{i}, x, x);
- x = t.a{2};
- %remove bias term
- x = x(:,2:end);
- end
- end
其实就是每一层一个autoencoder,隐藏层的值作为下一层的输入
各类变形
为了不致于本文内容太少。。。现在单独把它的几个变形提出来说说
sparse autoencoder:

这就是ufldl讲的版本,toolbox中的代码和ufldl中练习的部分基本一致:
在nnff.m中使用:nn.p{i} = 0.99 * nn.p{i} + 0.01 * mean(nn.a{i}, 1);计算
在nnbp.m中使用
pi = repmat(nn.p{i}, size(nn.a{i}, 1), 1);
sparsityError = [zeros(size(nn.a{i},1),1) nn.nonSparsityPenalty * (-nn.sparsityTarget ./ pi + (1 - nn.sparsityTarget) ./ (1 - pi))];
计算sparsityError即可
denoising autoencoder:
denoising其实就是在autoencoder的基础上,给输入的x加入噪声,就相当于dropout用在输入层
toolbox中的也实现非常简单:
在nntrain.m中:
batch_x = batch_x.*(rand(size(batch_x))>nn.inputZeroMaskedFraction)
也就是随即把大小为(nn.inputZeroMaskedFraction)的一部分x赋成0,denoising autoencoder的表现好像比sparse autoencoder要强一些
Contractive Auto-Encoders:
这个变形呢是《Contractive auto-encoders: Explicit invariance during feature extraction》提出的
这篇论文里也总结了一下autoencoder,感觉很不错
Contractive autoencoders的模型是:

其中:
hj是表示hidden layer的函数,用它对x求导
论文里说:这个项是
encourages the mapping to the feature space to be contractive in the neighborhood of the training data
具体的实现呢是:

代码呢参看:论文作者提供的:点击打开链接
主要是
jacobian(self,x):
_jacobi_loss():
_fit_reconstruction():
这几个函数和autoencoder有出入,其实也比较简单,就不细讲了
总结:
matlab的Deep Learning的toolbox 中的SAE算法的更多相关文章
- [Deep Learning] 深度学习中消失的梯度
好久没有更新blog了,最近抽时间看了Nielsen的<Neural Networks and Deep Learning>感觉小有收获,分享给大家. 了解深度学习的同学可能知道,目前深度 ...
- (3)Deep Learning之神经网络和反向传播算法
往期回顾 在上一篇文章中,我们已经掌握了机器学习的基本套路,对模型.目标函数.优化算法这些概念有了一定程度的理解,而且已经会训练单个的感知器或者线性单元了.在这篇文章中,我们将把这些单独的单元按照一定 ...
- 李宏毅机器学习笔记4:Brief Introduction of Deep Learning、Backpropagation(后向传播算法)
李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对 ...
- Deep Learning基础--word2vec 中的数学原理详解
word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单.高效,因此引起了很多人的关注.由于 word2vec 的作者 Tomas Miko ...
- Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)
Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文, ...
- Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现
https://blog.csdn.net/zouxy09/article/details/9993371 自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一 ...
- 转【面向代码】学习 Deep Learning(二)Deep Belief Nets(DBNs)
[面向代码]学习 Deep Learning(二)Deep Belief Nets(DBNs) http://blog.csdn.net/dark_scope/article/details/9447 ...
- 【面向代码】学习 Deep Learning(三)Convolution Neural Network(CNN)
========================================================================================== 最近一直在看Dee ...
- Deep learning:四十二(Denoise Autoencoder简单理解)
前言: 当采用无监督的方法分层预训练深度网络的权值时,为了学习到较鲁棒的特征,可以在网络的可视层(即数据的输入层)引入随机噪声,这种方法称为Denoise Autoencoder(简称dAE),由Be ...
随机推荐
- hadoop2集群环境搭建
在查询了很多资料以后,发现国内外没有一篇关于hadoop2集群环境搭建的详细步骤的文章. 所以,我想把我知道的分享给大家,方便大家交流. 以下是本文的大纲: 1. 在windows7 下面安装虚拟机2 ...
- ssh 免密登录
一,单机秘密登录 进入/etc/ssh 文件夹 编辑sshd_config 文件(sshd_config是ssh 服务端文件,ssh_config是客户端文件) sudo vi sshd_config ...
- vue全选与取消全选
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- .NET Core 中基于 IHostedService 实现后台定时任务
.NET Core 2.0 引入了 IHostedService ,基于它可以很方便地执行后台任务,.NET Core 2.1 则锦上添花地提供了 IHostedService 的默认实现基类 Bac ...
- bytes,bytearray
1.bytes.bytearray ---Python3 引入的! bytes:不可变字节序列,bytearray:字节属组,可变 都是连续的空间. 2.字符串与bytes 字符串是字符组成的有序的序 ...
- 关于word粘贴图片无法显示的原因
今天在进行word文档粘贴图片编辑操作的时候,老是无法完整的显示图片.或者干脆就不显示图片,以为是qq截图的图片格式无法粘贴到word文档里面,用Photoshop更改图片的格式仍然无法显示(将png ...
- 实现promise
// 判断变量否为function const isFunction = variable => typeof variable === 'function' // 定义Promise的三种 ...
- Go并发示例-Pool
https://mp.weixin.qq.com/s/MBY6l5VxrFPJ4AA8nGeQUQ <Go语言实战>笔记(十六) | Go并发示例-Pool 飞雪无情 异步图书 2017- ...
- PowerDesigner软件建立新模型。
打开PowerDesigner软件,选择菜单文件->建立新模型,或者敲击键盘ctrl+N 弹出建立新模型窗口,模型类型选择Object-Oriented Model,图选择Class D ...
- 管理npm源命令
nrm ls 查看源镜像 nrm add 自定义名称 源地址 nrm use 自定义名称